Skip to main content

Drug Interactions between budesonide nasal and Prevpac

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

clarithromycin budesonide nasal

Applies to: Prevpac (amoxicillin / clarithromycin / lansoprazole) and budesonide nasal

MONITOR: Coadministration with inhibitors of CYP450 3A4 may increase the systemic bioavailability of budesonide, which undergoes extensive first-pass and systemic metabolism via intestinal and hepatic CYP450 3A4. In pharmacokinetic studies, 6- to 8-fold increases in budesonide systemic exposure (AUC) have been observed during coadministration of the potent CYP450 3A4 inhibitor ketoconazole with different oral formulations of budesonide. When ketoconazole was administered 12 hours after budesonide in one study, the AUC increase was approximately half that reported during simultaneous administration. In a prospective study of a cystic fibrosis center patient population, 11 of 25 patients receiving high-dose itraconazole (400 to 600 mg/day) and budesonide oral inhalation therapy (800 to 1600 mcg/day) were found to have adrenal insufficiency, including one who developed Cushing's syndrome, compared to none in a group of 12 patients treated with itraconazole alone. There was also no adrenal insufficiency in a group of 30 cystic fibrosis patients retrospectively included as controls, 24 of whom had been treated with high-dose inhaled budesonide for several years. Adrenal function improved, but did not normalize, in 10 of the 11 patients during a follow-up of two to ten months after discontinuation of itraconazole and institution of hydrocortisone replacement therapy. Limited pharmacokinetic data indicate that itraconazole (200 mg once daily) may increase the plasma levels of budesonide by about 4-fold following inhalation of a single 1000 mcg dose, which may be mainly due to increased bioavailability of the swallowed portion of the dose.

MANAGEMENT: The possibility of increased systemic adverse effects of budesonide should be considered during coadministration with CYP450 3A4 inhibitors. If concomitant use cannot be avoided, the dosing times between budesonide and the CYP450 3A4 inhibitor should be separated by as much as possible. In addition, the lowest effective dosage of budesonide should be prescribed, and further adjustments made as necessary according to therapeutic response and tolerance. Patients should be monitored for signs and symptoms of hypercorticism such as acne, striae, thinning of the skin, easy bruising, moon facies, dorsocervical "buffalo" hump, truncal obesity, increased appetite, acute weight gain, edema, hypertension, hirsutism, hyperhidrosis, proximal muscle wasting and weakness, glucose intolerance, exacerbation of preexisting diabetes, depression, and menstrual disorders. Other systemic glucocorticoid effects may include adrenal suppression, immunosuppression, posterior subcapsular cataracts, glaucoma, bone loss, and growth retardation in children and adolescents.

References

  1. Jonsson G, Astrom A, Andersson P (1995) "Budesonide is metabolized by cytochrome P450 3A (CYP3A) enzymes in human liver." Drug Metab Dispos, 23, p. 137-42
  2. (2001) "Product Information. Entocort (budesonide)." AstraZeneca Pharma Inc
  3. Raaska K, Niemi M, Neuvonen M, Neuvonen PJ, Kivisto KT (2002) "Plasma concentrations of inhaled budesonide and its effects on plasma cortisol are increased by the cytochrome P4503A4 inhibitor itraconazole." Clin Pharmacol Ther, 72, p. 362-369
  4. Main KM, Skov M, Sillesen IB, et al. (2002) "Cushing's syndrome due to pharmacological interaction in a cystic fibrosis patient." Acta Paediatr, 91, p. 1008-11
  5. Skov M, Main KM, Sillesen IB, Muller J, Koch C, Lanng S (2002) "Iatrogenic adrenal insufficiency as a side-effect of combined treatment of itraconazole and budesonide." Eur Respir J, 20, p. 127-33
  6. De Wachter E, Vanbesien J, De Schutter I, Malfroot A, De Schepper J (2003) "Rapidly developing Cushing syndrome in a 4-year-old patient during combined treatment with itraconazole and inhaled budesonide." Eur J Pediatr
  7. Bolland MJ, Bagg W, Thomas MG, Lucas JA, Ticehurst R, Black PN (2004) "Cushing's syndrome due to interaction between inhaled corticosteroids and itraconazole." Ann Pharmacother, 38, p. 46-9
  8. Edsbacker S, Andersson T (2004) "Pharmacokinetics of budesonide (Entocort EC) capsules for Crohn's disease." Clin Pharmacokinet, 43, p. 803-21
  9. De Wachter E, Malfroot A, De Schutter I, Vanbesien J, De Schepper J (2003) "Inhaled budesonide induced Cushing's syndrome in cystic fibrosis patients, due to drug inhibition of cytochrome P450." J Calif Dent Assoc, 2, p. 72-5
  10. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  11. Cerner Multum, Inc. "Australian Product Information."
  12. Molimard M, Girodet PO, Pollet C, et al. (2008) "Inhaled corticosteroids and adrenal insufficiency: prevalence and clinical presentation." Drug Saf, 31, p. 769-74
  13. Daveluy A, Raignoux C, Miremont-Salame G, et al. (2009) "Drug interactions between inhaled corticosteroids and enzymatic inhibitors." Eur J Clin Pharmacol
  14. Kedem E, Shahar E, Hassoun G, Pollack S (2010) "Iatrogenic Cushing's syndrome due to coadministration of ritonavir and inhaled budesonide in an asthmatic human immunodeficiency virus infected patient." J Asthma, 47, p. 830-1
  15. (2011) "Product Information. Victrelis (boceprevir)." Schering-Plough Corporation
  16. (2011) "Product Information. Incivek (telaprevir)." Vertex Pharmaceuticals
View all 16 references

Switch to consumer interaction data

Moderate

clarithromycin lansoprazole

Applies to: Prevpac (amoxicillin / clarithromycin / lansoprazole) and Prevpac (amoxicillin / clarithromycin / lansoprazole)

MONITOR: Coadministration with clarithromycin may increase the plasma concentrations of lansoprazole. The proposed mechanism is clarithromycin inhibition of intestinal (first-pass) and hepatic metabolism of lansoprazole via CYP450 3A4. Although lansoprazole is primarily metabolized by CYP450 2C19 in the liver, 3A4-mediated metabolism is the predominant pathway in individuals who are 2C19-deficient (approximately 3% to 5% of the Caucasian and 17% to 20% of the Asian population). Additionally, inhibition of P-glycoprotein intestinal efflux transporter by clarithromycin may also contribute to the interaction, resulting in increased bioavailability of lansoprazole. In 18 healthy volunteers--six each of homozygous extensive metabolizers (EMs), heterozygous EMs, and poor metabolizers (PMs) of CYP450 2C19--clarithromycin (400 mg orally twice a day for 6 days) increased the peak plasma concentration (Cmax) of a single 60 mg oral dose of lansoprazole by 1.47, 1.71- and 1.52-fold, respectively, and area under the concentration-time curve (AUC) by 1.55-, 1.74- and 1.80-fold, respectively, in each of these groups compared to placebo. The AUC ratio of lansoprazole to lansoprazole sulphone, which is considered an index of CYP450 3A4 activity, was significantly increased by clarithromycin in all three groups. However, elimination half-life of lansoprazole was prolonged by 1.54-fold only in PMs. Mild diarrhea was reported in two subjects and mild abdominal disturbance in six subjects during clarithromycin coadministration. These side effects continued until day 6 and ameliorated the day after discontinuation of clarithromycin, whereas no adverse events were reported during placebo administration or after lansoprazole plus placebo. In another study, clarithromycin induced dose-dependent increases in the plasma concentration of lansoprazole in a group of 20 patients receiving treatment for H. pylori eradication. Mean 3-hour plasma lansoprazole concentration was 385 ng/mL for the control subjects who received lansoprazole 30 mg and amoxicillin 750 mg twice a day for 7 days; 696 ng/mL for patients coadministered clarithromycin 200 mg twice a day; and 947 ng/mL for patients coadministered clarithromycin 400 mg twice a day.

MANAGEMENT: Although lansoprazole is generally well tolerated, caution may be advised during coadministration with clarithromycin, particularly if higher dosages of one or both drugs are used. Dosage adjustment may be necessary in patients who experience excessive adverse effects of lansoprazole.

References

  1. Ushiama H, Echizen H, Nachi S, Ohnishi A (2002) "Dose-dependent inhibition of CYP3A activity by clarithromycin during Helicobacter pylori eradication therapy assessed by changes in plasma lansoprazole levels and partial cortisol clearance to 6beta-hydroxycortisol." Clin Pharmacol Ther, 72, p. 33-43
  2. Saito M, Yasui-Furukori N, Uno T, et al. (2005) "Effects of clarithromycin on lansoprazole pharmacokinetics between CYP2C19 genotypes." Br J Clin Pharmacol, 59, p. 302-9
  3. Miura M, Tada H, Yasui-Furukori N, et al. (2005) "Effect of clarithromycin on the enantioselective disposition of lansoprazole in relation to CYP2C19 genotypes." Chirality, 17, p. 338-344

Switch to consumer interaction data

Minor

amoxicillin clarithromycin

Applies to: Prevpac (amoxicillin / clarithromycin / lansoprazole) and Prevpac (amoxicillin / clarithromycin / lansoprazole)

Although some in vitro data indicate synergism between macrolide antibiotics and penicillins, other in vitro data indicate antagonism. When these drugs are given together, neither has predictable therapeutic efficacy. Data are available for erythromycin, although theoretically this interaction could occur with any macrolide. Except for monitoring of the effectiveness of antibiotic therapy, no special precautions appear to be necessary.

References

  1. Strom J (1961) "Penicillin and erythromycin singly and in combination in scarlatina therapy and the interference between them." Antibiot Chemother, 11, p. 694-7
  2. Cohn JR, Jungkind DL, Baker JS (1980) "In vitro antagonism by erythromycin of the bactericidal action of antimicrobial agents against common respiratory pathogens." Antimicrob Agents Chemother, 18, p. 872-6
  3. Penn RL, Ward TT, Steigbigel RT (1982) "Effects of erythromycin in combination with penicillin, ampicillin, or gentamicin on the growth of listeria monocytogenes." Antimicrob Agents Chemother, 22, p. 289-94

Switch to consumer interaction data

Drug and food interactions

Minor

clarithromycin food

Applies to: Prevpac (amoxicillin / clarithromycin / lansoprazole)

Grapefruit juice may delay the gastrointestinal absorption of clarithromycin but does not appear to affect the overall extent of absorption or inhibit the metabolism of clarithromycin. The mechanism of interaction is unknown but may be related to competition for intestinal CYP450 3A4 and/or absorptive sites. In an open-label, randomized, crossover study consisting of 12 healthy subjects, coadministration with grapefruit juice increased the time to reach peak plasma concentration (Tmax) of both clarithromycin and 14-hydroxyclarithromycin (the active metabolite) by 80% and 104%, respectively, compared to water. Other pharmacokinetic parameters were not significantly altered. This interaction is unlikely to be of clinical significance.

References

  1. Cheng KL, Nafziger AN, Peloquin CA, Amsden GW (1998) "Effect of grapefruit juice on clarithromycin pharmacokinetics." Antimicrob Agents Chemother, 42, p. 927-9

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.