Skip to main content

Drug Interactions between Azor and insulin regular

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

insulin regular olmesartan

Applies to: insulin regular and Azor (amlodipine / olmesartan)

MONITOR: The hypoglycemic effect of insulin may be potentiated by certain drugs, including ACE inhibitors, angiotensin receptor blockers (ARBs), 4-aminoquinolines, amylin analogs, anabolic steroids, fibrates, monoamine oxidase inhibitors (MAOIs, including linezolid), salicylates, selective serotonin reuptake inhibitors (SSRIs), sulfonamides, disopyramide, propoxyphene, quinidine, quinine, and ginseng. These drugs may increase the risk of hypoglycemia by enhancing insulin sensitivity (ACE inhibitors, ARBs, fibrates, ginseng); stimulating insulin secretion (salicylates, disopyramide, pentoxifylline, propoxyphene, quinidine, quinine, MAOIs, ginseng); decreasing insulin clearance and resistance (4-aminoquinolines); increasing peripheral glucose utilization (SSRIs, insulin-like growth factor); inhibiting gluconeogenesis (SSRIs, MAOIs, insulin-like growth factor); slowing the rate of gastric emptying (amylin analogs); and/or suppressing postprandial glucagon secretion (amylin analogs). Clinical hypoglycemia has been reported during use of some of these agents alone or with insulin and/or insulin secretagogues. Use of SSRIs has also been associated with loss of awareness of hypoglycemia in isolated cases.

MANAGEMENT: Close monitoring for the development of hypoglycemia is recommended if these drugs are coadministered with insulin, particularly in patients with advanced age and/or renal impairment. The insulin dosage may require adjustment if an interaction is suspected. Patients should be apprised of the signs and symptoms of hypoglycemia (e.g., headache, dizziness, drowsiness, nausea, hunger, tremor, weakness, sweating, palpitations), how to treat it, and to contact their physician if it occurs. Patients should be observed for loss of glycemic control when these drugs are withdrawn.

References

  1. Daubresse JC, Luyckx AS, Lefebvre PJ (1976) "Potentiation of hypoglycemic effect of sulfonylureas by clofibrate." N Engl J Med, 294, p. 613
  2. Salmela PI, Sotaniemi EA, Viikari J, et al. (1981) "Fenfluramine therapy in non-insulin-dependent diabetic patients effects on body weight, glucose homeostasis, serum lipoproteins, and antipyrine metabolism." Diabetes Care, 4, p. 535-40
  3. Verdy M, Charbonneau L, Verdy I, Belanger R, Bolte E, Chiasson JL (1983) "Fenfluramine in the treatment of non-insulin-dependent diabetics: hypoglycemic versus anorectic effect." Int J Obes, 7, p. 289-97
  4. Baciewicz AM, Swafford WB Jr (1984) "Hypoglycemia induced by the interaction of chlorpropamide and co-trimoxazole." Drug Intell Clin Pharm, 18, p. 309-10
  5. Richardson T, Foster J, Mawer GE (1986) "Enhancement by sodium salicylate of the blood glucose lowering effect of chlorpropamide-drug interaction or summation of similar effects." Br J Clin Pharmacol, 22, p. 43-8
  6. Johnson J, Dobmeier M (1990) "Symptomatic hypoglycemia secondary to a glipizide-trimethoprim/sulfamethoxazole drug interaction." DICP, 24, p. 250-1
  7. Goldberg IJ, Brown LK, Rayfield EJ (1980) "Disopyramide (norpace)-induced hypoglycemia." Am J Med, 69, p. 463-6
  8. Quevedo SF, Krauss DS, Chazan JA, et al. (1981) "Fasting hypoglycemia secondary to disopyramide therapy." JAMA, 245, p. 2424
  9. Semel JD, Wortham E, Karl DM (1983) "Fasting hypoglycemia associated with disopyramide." Am Heart J, 106, p. 1160-1
  10. Nappi JM, Dhanani S, Lovejoy JR, VanderArk C (1983) "Severe hypoglycemia associated with disopyramide." West J Med, 138, p. 95-7
  11. Rubin M, Zakheim B, Pitchumoni C (1983) "Disopyramide-induced profound hypoglycemia." N Y State J Med, July,Aug,S, p. 1057-8
  12. Croxson MS, Shaw DW, Henley PG, Gabriel HDLL (1987) "Disopyramide-induced hypoglycaemia and increased serum insulin." N Z Med J, July, p. 407-8
  13. Giugliano D, Ceriello A, Saccomanno F, et al. (1985) "Effects of salicylate, tolbutamide, and prostaglandin E2 on insulin responses to glucose in noninsulin-dependent diabetes mellitus." J Clin Endocrinol Metab, 61, p. 160-6
  14. Wiederholt IC, Genco M, Foley JM (1967) "Recurrent episodes of hypoglycemia induced by propoxyphene." Neurology, 17, p. 703-6
  15. Barbato M (1984) "Another problem with Kinidin." Med J Aust, 141, p. 685
  16. Arauz-Pacheco C, Ramirez LC, Rios JM, Raskin P (1990) "Hypoglycemia induced by angiotensin-converting enzyme inhibitors in patients with non-insulin-dependent diabetes receiving sulfonylurea therapy." Am J Med, 89, p. 811-3
  17. Murakami K, Nambu S, Koh H, Kobayashi M, Shigeta Y (1984) "Clofibrate enhances the affinity of insulin receptors in non-insulin dependent diabetes mellitus." Br J Clin Pharmacol, 17, p. 89-91
  18. Daubresse JC, Daigneux D, Bruwier M, Luyckx A, Lefebvre PJ (1979) "Clofibrate and diabetes control in patients treated with oral hypoglycaemic agents." Br J Clin Pharmacol, 7, p. 599-603
  19. Whitcroft IA, Thomas JM, Rawsthorne A, et al. (1990) "Effects of alpha and beta adrenoceptor blocking drugs and ACE inhibitors on long term glucose and lipid control in hypertensive non-insulin dependent diabetics." Horm Metab Res Suppl, 22, p. 42-6
  20. Ahmad S (1991) "Gemfibrozil: interaction with glyburide." South Med J, 84, p. 102
  21. Konttinen A, Kuisma I, Ralli R, Pohjola S, Ojala K (1979) "The effect of gemfibrozil on serum lipids in diabetic patients." Ann Clin Res, 11, p. 240-5
  22. de Salcedo I, Gorringe AL, Silva JL, Santos JA (1976) "Gemfibrozil in a group of diabetics." Proc R Soc Med, 69, p. 64-70
  23. Phillips RE, Looareesuwan S, White NJ, et al. (1986) "Hypoglycaemia and antimalarial drugs: quinidine and release of insulin." Br Med J, 292, p. 1319-21
  24. Davis TM, Karbwang J, Looareesuwan S, et al. (1990) "Comparative effects of quinine and quinidine on glucose metabolism in healthy volunteers." Br J Clin Pharmacol, 30, p. 397-403
  25. Wu B, Sato T, Kiyosue T, Arita M (1992) "Blockade of 2,4-dinitrophenol induced ATP sensitive potassium current in guinea pig ventricular myocytes by class I antiarrhythmic drugs." Cardiovasc Res, 26, p. 1095-101
  26. Nakabayashi H, Ito T, Igawa T, Hiraiwa Y, Imamura T, Seta T, Kawato M, Usukura N, Takeda R (1989) "Disopyramide induces insulin secretion and plasma glucose diminution: studies using the in situ canine pancreas." Metabolism, 38, p. 179-83
  27. Strathman I, Schubert EN, Cohen A, Nitzberg DM (1983) "Hypoglycemia in patients receiving disopyramide phosphate." Drug Intell Clin Pharm, 17, p. 635-8
  28. Cacoub P, Deray G, Baumelou A, Grimaldi A, Soubrie C, Jacobs C (1989) "Disopyramide-induced hypoglycemia: case report and review of the literature." Fundam Clin Pharmacol, 3, p. 527-35
  29. Asplund K, Wiholm BE, Lithner F (1983) "Glibenclamide-associated hypoglycaemia: a report on 57 cases." Diabetologia, 24, p. 412-7
  30. Slade IH, and Iosefa RN (1967) "Fatal hypoglycemic coma from the use of tolbutamide in elderly patients: report of two cases." J Am Geriatr Soc, 15, p. 948-50
  31. Cattaneo AG, Caviezel F, Pozza G (1990) "Pharmacological interaction between tolbutamide and acetylsalicylic acid: study on insulin secretion in man." Int J Clin Pharmacol Ther Toxicol, 28, p. 229-34
  32. Christensen LK, Hansen JM, Kristensen M (1963) "Sulphaphenazole-induced hypoglycemic attacks in tolbutamide-treated diabetics." Lancet, 2, p. 1298-301
  33. Turtle JR, Burgess JA (1973) "Hypoglycemic action of fenfluramine in diabetes mellitus." Diabetes, 22, p. 858-67
  34. Ferriere M, Lachkar H, Richard JL, Bringer J, Orsetti A, Mirouze J (1985) "Captopril and insulin sensitivity." Ann Intern Med, 102, p. 134-5
  35. Johnson JA, Kappel JE, Sharif MN (1993) "Hypoglycemia secondary to trimethoprim/sulfamethoxazole administration in a renal transplant patient." Ann Pharmacother, 27, p. 304-6
  36. Almirall J, Montoliu J, Torras A, Revert L (1989) "Propoxyphene-induced hypoglycemia in a patient with chronic renal failure." Nephron, 53, p. 273-5
  37. Hayashi S, Horie M, Tsuura Y, Ishida H, Okada Y, Seino Y, Sasayama S (1993) "Disopyramide blocks pancreatic ATP-sensitive K+ channels and enhances insulin release." Am J Physiol, 265, c337-42
  38. Phillips AF, Matty PJ, Porte PJ, Raye JR (1984) "Inhibition of glucose-induced insulin secretion by indomethacin and sodium salicylate in the fetal lamb." Am J Obstet Gynecol, 148, p. 481-7
  39. Baron SH (1982) "Salicylates as hypoglycemic agents." Diabetes Care, 5, p. 64-71
  40. Prince RL, Larkins RG, Alford FP (1981) "The effect of acetylsalicylic acid on plasma glucose and the response of glucose regulatory hormones to intravenous glucose and arginine in insulin treated diabetics and normal subjects." Metabolism, 30, p. 293-8
  41. Ferrari C, Fressati S, Romussi M, et al. (1977) "Effects of short-term clofibrate administration on glucose tolerance and insulin secretion in patients with chemical diabetes or hypertriglyceridemia." Metabolism, 26, p. 129-39
  42. Storlien LH, Thorburn AW, Smythe GA, Jenkins AB, Chisholm DJ, Kraegen EW (1989) "Effect of d-fenfluramine on basal glucose turnover and fat-feeding-induced insulin resistance in rats." Diabetes, 38, p. 499-503
  43. Pestell RG, Crock PA, Ward GM, Alford FP, Best JD (1989) "Fenfluramine increases insulin action in patients with NIDDM." Diabetes Care, 12, p. 252-8
  44. Harrison LC, King-Roach A, Martin FI, Melick RA (1975) "The effect of fenfluramine on insulin binding and on basal and insulin-stimulated oxidation of 1-C-glucose by human adipose tissue." Postgrad Med J, 51 Suppl 1, p. 110-4
  45. Feldman JM, Chapman B (1975) "Monoamine oxidase inhibitors: nature of their interaction with rabbit pancreatic islets to alter insulin secretion." Diabetologia, 11, p. 487-94
  46. Aleyassine H, Gardiner RJ (1975) "Dual action of antidepressant drugs (MAO inhibitors) on insulin release." Endocrinology, 96, p. 702-10
  47. Aleyassine H, Lee SH (1972) "Inhibition of insulin release by substrates and inhibitors of monoamine oxidase." Am J Physiol, 222, p. 565-9
  48. Cooper AJ, Ashcroft G (1966) "Potentiation of insulin hypoglycaemia by M.A.O.I. antidepressant drugs." Lancet, 1, p. 407-9
  49. Herings RMC, Deboer A, Stricker BHC, Leufkens HGM, Porsius A (1995) "Hypoglycaemia associated with use of inhibitors of angiotensin converting enzyme." Lancet, 345, p. 1195-8
  50. Ahmad S (1995) "Drug interaction induces hypoglycemia." J Fam Pract, 40, p. 540-1
  51. Feher MD, Amiel S (1995) "ACE inhibitors and hypoglycaemia." Lancet, 346, p. 125-6
  52. Paolisso G, Balbi V, Gambardella A, Varricchio G, Tortoriello R, Saccomanno F, Amato L, Varricchio M (1995) "Lisinopril administration improves insulin action in aged patients with hypertension." J Hum Hypertens, 9, p. 541-6
  53. Darcy PF, Griffin JP (1995) "Interactions with drugs used in the treatment of depressive illness." Adverse Drug React Toxicol Rev, 14, p. 211-31
  54. Kubacka RT, Antla EJ, Juhl RP, Welshman IR (1996) "Effects of aspirin and ibuprofen on the pharmacokinetics and pharmacodynamics of glyburide in healthy subjects." Ann Pharmacother, 30, p. 20-6
  55. Deeg MA, Lipkin EW (1996) "Hypoglycemia associated with the use of fluoxetine." West J Med, 164, p. 262-3
  56. Hellman B (1974) "Potentiating effects of drugs on the binding of glibenclamide to pancreatic beta cells." Metabolism, 23, p. 839-46
  57. Hekimsoy Z, Biberoglu S, Comlekci A, Tarhan O, Mermut C, Biberoglu K (1997) "Trimethoprim/sulfamethoxazole-induced hypoglycemia in a malnourished patient with severe infection." Eur J Endocrinol, 136, p. 3046
  58. Iida H, Morita T, Suzuki E, Iwasawa K, Toyooka T, Nakajima T (1999) "Hypoglycemia induced by interaction between clarithromycin and disopyramide." Jpn Heart J, 40, p. 91-6
  59. Morris AD, Newton RW, Boyle DI, et al. (1997) "ACE inhibitor use is associated with hospitalization for severe hypoglycemia in patients with diabetes." Diabetes Care, 20, p. 1363-7
  60. Abad S, Moachon L, Blanche P, Bavoux F, Sicard D, Salmon-Ceron D (2001) "Possible interaction between glicazide, fluconazole and sulfamethoxazole resulting in severe hypoglycaemia." Br J Clin Pharmacol, 52, p. 456-7
  61. (2002) "Product Information. Humalog (insulin lispro)." Lilly, Eli and Company
  62. (2002) "Product Information. Humulin 70/30 (insulin isophane-insulin regular)." Lilly, Eli and Company
  63. Pollak PT, Mukherjee SD, Fraser AD (2001) "Sertraline-induced hypoglycemia." Ann Pharmacother, 35, p. 1371-4
  64. Hundal RS, Petersen KF, Mayerson AB, et al. (2002) "Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes." J Clin Invest, 109, p. 1321-6
  65. (2004) "Product Information. Apidra (insulin glulisine)." Aventis Pharmaceuticals
  66. Fogari R, Zoppi A, Corradi L, Pierangelo L, Mugellini A, Lusardi P (1998) "Comparative effects of lisinopril and losartan on insulin sensitivity in the treatment of non diabetic hypertension." Br J Clin Pharmacol, 46, p. 467-71
  67. Vuorinen-Markkola H, Yki-Jarvinen H (1995) "Antihypertensive therapy with enalapril improves glucose storage and insulin sensitivity in hypertensive patients with non-insulin-dependent diabetes mellitus." Metabolism, 44, p. 85-9
  68. (2005) "Product Information. Increlex (mecasermin)." Tercica Inc
  69. Vuksan V, Sievenpiper JL, Koo VY, et al. (2000) "American ginseng (Panax quinquefolius L) reduces postprandial glycemia in nondiabetic subjects and subjects with type 2 diabetes mellitus." Arch Intern Med, 160, p. 1009-13
  70. Vuksan V, Stavro MP, Sievenpiper JL, et al. (2000) "Similar postprandial glycemic reductions with escalation of dose and administration time of American ginseng in type 2 diabetes." Diabetes Care, 23, p. 1221-6
  71. Sievenpiper JL, Arnason JT, Leiter LA, Vuksan V (2003) "Variable effects of American ginseng: a batch of American ginseng (Panax quinquefolius L.) with a depressed ginsenoside profile does not affect postprandial glycemia." Eur J Clin Nutr, 57, p. 243-8
  72. Ben Salem C, Fathallah N, Hmouda H, Bouraoui K (2011) "Drug-induced hypoglycaemia: an update." Drug Saf, 34, p. 21-45
  73. (2014) "Product Information. Afrezza (insulin inhalation, rapid acting)." MannKind Corporation
  74. (2015) "Product Information. Ryzodeg 70/30 FlexTouch (insulin aspart-insulin degludec)." Novo Nordisk Pharmaceuticals Inc
  75. (2015) "Product Information. Tresiba FlexTouch (insulin degludec)." Novo Nordisk Pharmaceuticals Inc
  76. World Health Organization (2020) WHO Public Assessment Reports (WHOPARs) https://extranet.who.int/pqweb/medicines/prequalification-reports/whopars
View all 76 references

Switch to consumer interaction data

Drug and food interactions

Moderate

insulin regular food

Applies to: insulin regular

GENERALLY AVOID: Alcohol may cause hypoglycemia or hyperglycemia in patients with diabetes. Hypoglycemia most frequently occurs during acute consumption of alcohol. Even modest amounts can lower blood sugar significantly, especially when the alcohol is ingested on an empty stomach or following exercise. The mechanism involves inhibition of both gluconeogenesis as well as the counter-regulatory response to hypoglycemia. Episodes of hypoglycemia may last for 8 to 12 hours after ethanol ingestion. By contrast, chronic alcohol abuse can cause impaired glucose tolerance and hyperglycemia. Moderate alcohol consumption generally does not affect blood glucose levels in patients with well controlled diabetes. A disulfiram-like reaction (e.g., flushing, headache, and nausea) to alcohol has been reported frequently with the use of chlorpropamide and very rarely with other sulfonylureas.

MANAGEMENT: Patients with diabetes should avoid consuming alcohol if their blood glucose is not well controlled, or if they have hypertriglyceridemia, neuropathy, or pancreatitis. Patients with well controlled diabetes should limit their alcohol intake to one drink daily for women and two drinks daily for men (1 drink = 5 oz wine, 12 oz beer, or 1.5 oz distilled spirits) in conjunction with their normal meal plan. Alcohol should not be consumed on an empty stomach or following exercise.

References

  1. Jerntorp P, Almer LO (1981) "Chlorpropamide-alcohol flushing in relation to macroangiopathy and peripheral neuropathy in non-insulin dependent diabetes." Acta Med Scand, 656, p. 33-6
  2. Jerntorp P, Almer LO, Holin H, et al. (1983) "Plasma chlorpropamide: a critical factor in chlorpropamide-alcohol flush." Eur J Clin Pharmacol, 24, p. 237-42
  3. Barnett AH, Spiliopoulos AJ, Pyke DA, et al. (1983) "Metabolic studies in chlorpropamide-alcohol flush positive and negative type 2 (non-insulin dependent) diabetic patients with and without retinopathy." Diabetologia, 24, p. 213-5
  4. Hartling SG, Faber OK, Wegmann ML, Wahlin-Boll E, Melander A (1987) "Interaction of ethanol and glipizide in humans." Diabetes Care, 10, p. 683-6
  5. (2002) "Product Information. Diabinese (chlorpropamide)." Pfizer U.S. Pharmaceuticals
  6. (2002) "Product Information. Glucotrol (glipizide)." Pfizer U.S. Pharmaceuticals
  7. "Product Information. Diabeta (glyburide)." Hoechst Marion-Roussel Inc, Kansas City, MO.
  8. Skillman TG, Feldman JM (1981) "The pharmacology of sulfonylureas." Am J Med, 70, p. 361-72
  9. (2002) "Position Statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes related complications. American Diabetes Association." Diabetes Care, 25(Suppl 1), S50-S60
  10. Cerner Multum, Inc. "UK Summary of Product Characteristics."
View all 10 references

Switch to consumer interaction data

Moderate

olmesartan food

Applies to: Azor (amlodipine / olmesartan)

GENERALLY AVOID: Moderate-to-high dietary intake of potassium, especially salt substitutes, may increase the risk of hyperkalemia in some patients who are using angiotensin II receptor blockers (ARBs). ARBs can promote hyperkalemia through inhibition of angiotensin II-induced aldosterone secretion. Patients with diabetes, heart failure, dehydration, or renal insufficiency have a greater risk of developing hyperkalemia.

MANAGEMENT: Patients should receive dietary counseling and be advised to not use potassium-containing salt substitutes or over-the-counter potassium supplements without consulting their physician. If salt substitutes are used concurrently, regular monitoring of serum potassium levels is recommended. Patients should also be advised to seek medical attention if they experience symptoms of hyperkalemia such as weakness, irregular heartbeat, confusion, tingling of the extremities, or feelings of heaviness in the legs.

References

  1. (2001) "Product Information. Cozaar (losartan)." Merck & Co., Inc
  2. (2001) "Product Information. Diovan (valsartan)." Novartis Pharmaceuticals

Switch to consumer interaction data

Moderate

amLODIPine food

Applies to: Azor (amlodipine / olmesartan)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
View all 8 references

Switch to consumer interaction data

Moderate

amLODIPine food

Applies to: Azor (amlodipine / olmesartan)

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
  2. Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
  3. Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
  6. Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
  7. Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
  10. Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
  12. McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
  13. Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
View all 14 references

Switch to consumer interaction data

Minor

amLODIPine food

Applies to: Azor (amlodipine / olmesartan)

The consumption of grapefruit juice may slightly increase plasma concentrations of amlodipine. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. Data have been conflicting and the clinical significance is unknown. Monitoring for calcium channel blocker adverse effects (e.g., headache, hypotension, syncope, tachycardia, edema) is recommended.

References

  1. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  2. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  3. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  4. Vincent J, Harris SI, Foulds G, Dogolo LC, Willavize S, Friedman HL (2000) "Lack of effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of amlodipine." Br J Clin Pharmacol, 50, p. 455-63
  5. Josefsson M, Ahlner J (2002) "Amlodipine and grapefruit juice." Br J Clin Pharmacol, 53, 405; discussion 406
  6. Kane GC, Lipsky JJ (2000) "Drug-grapefruit juice interactions." Mayo Clin Proc, 75, p. 933-42
View all 6 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.