Skip to main content

Drug Interactions between Aspirin Buffered and lisinopril

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

aspirin calcium carbonate

Applies to: Aspirin Buffered (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide) and Aspirin Buffered (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide)

MONITOR: Chronic administration of antacids may reduce serum salicylate concentrations in patients receiving large doses of aspirin or other salicylates. The mechanism involves reduction in salicylate renal tubular reabsorption due to urinary alkalinization by antacids, resulting in increased renal salicylate clearance. In three children treated with large doses of aspirin for rheumatic fever, serum salicylate levels declined 30% to 70% during coadministration with a magnesium and aluminum hydroxide antacid. Other studies have found similar, albeit less dramatic results. Antacids reportedly have no effect on the oral bioavailability of aspirin in healthy adults. However, administration of antacids containing either aluminum and magnesium hydroxide or calcium carbonate two hours before aspirin dosing led to reduced absorption of aspirin in uremic patients.

MANAGEMENT: Patients treated chronically with antacids (or oral medications that contain antacids such as didanosine buffered tablets or pediatric oral solution) and large doses of salicylates (i.e. 3 g/day or more) should be monitored for potentially diminished or inadequate analgesic and anti-inflammatory effects, and the salicylate dosage adjusted if necessary.

References

  1. D'Arcy PF, McElnay JC "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm 21 (1987): 607-17
  2. Gaspari F, Vigano G, Locatelli M, Remuzzi G "Influence of antacid administrations on aspirin absorption in patients with chronic renal failure on maintenance hemodialysis." Am J Kidney Dis 11 (1988): 338-42
  3. Furst DE "Clinically important interactions of nonsteroidal antiinflammatory drugs with other medications." J Rheumatol Suppl 17 (1988): 58-62
  4. Miners JO "Drug interactions involving aspirin (acetylsalicylic acid) and salicylic acid." Clin Pharmacokinet 17 (1989): 327-44
  5. Levy G, Lampman T, Kamath BL, Garrettson LK "Decreased serum salicylate concentrations in children with rheumatic fever treated with antacid." N Engl J Med 293 (1975): 323-5
  6. Shastri RA "Effect of antacids on salicylate kinetics." Int J Clin Pharmacol Ther Toxicol 23 (1985): 480-4
  7. Covington TR, eds., Lawson LC, Young LL "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association (1993):
  8. Brouwers JRBJ, Desmet PAGM "Pharmacokinetic-pharmacodynamic drug interactions with nonsteroidal anti-inflammatory drugs." Clin Pharmacokinet 27 (1994): 462-85
  9. "Product Information. Diflunisal (diflunisal)." Chartwell RX, LLC. (2023):
View all 9 references

Switch to consumer interaction data

Moderate

aspirin lisinopril

Applies to: Aspirin Buffered (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide) and lisinopril

MONITOR: Some investigators suggest that coadministration with aspirin may attenuate the vasodilator and hypotensive effects of ACE inhibitors. In addition, some have found that the benefits of ACE inhibitors on morbidity and mortality in post-acute myocardial infarction, coronary heart disease, and particularly congestive heart failure may be compromised or even nullified by aspirin. The proposed mechanism is aspirin inhibition of cyclooxygenase, resulting in suppression of prostaglandin synthesis and prostaglandin-mediated hemodynamic effects of ACE inhibitors. However, evidence of a negative interaction is largely contradictory, and interpretation of relevant data has often been complicated by multiple confounding elements as well as the retrospective or post hoc nature of most studies. Available data seem to indicate that low-dose aspirin (less than 236 mg/day, and especially less than 100 mg/day) is unlikely, or at least significantly less likely, to interfere with ACE inhibitor effects, although susceptibility to the interaction may be subject to some degree of interpatient variability.

MANAGEMENT: Based on current data, it is difficult to determine the likelihood of a negative interaction between aspirin and ACE inhibitors and its clinical relevance during long-term therapy, particularly in congestive heart failure. Current recommendations generally do not preclude combination use in patients with cardiovascular diseases or risk factors that might otherwise benefit from the drugs independently. However, patients receiving long-term therapy with the combination should undergo regular blood pressure and other appropriate clinical monitoring such as renal function assessments. The lowest therapeutic dosage of aspirin should be used.

References

  1. Moore TJ, Crantz FR, Hollenberg NK "Contribution of prostaglandins to the antihypertensive action of captopril in essential hypertension." Hypertension 3 (1981): 168-73
  2. Silberbauer K, Stanek B, Templ H "Acute hypotensive effect of captopril in man modified by prostaglandin synthesis inhibition." Br J Clin Pharmacol 14 (1982): s87-93
  3. Pfeffer MA, Braunwald E, Moye LA, et al. "Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction: results of the Survival and Ventricular Enlargement Trial." N Engl J Med 327 (1992): 669-77
  4. Hall D, Zeitler H, Rudolph W "Counteraction of the vasodilator effects of enalapril by aspirin in severe heart failure." J Am Coll Cardiol 20 (1992): 1549-55
  5. Acute Infarction Ramipril Efficacy (AIRE) Study Investigators "Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure." Lancet 342 (1993): 821-8
  6. Polonia J, Boaventura I, Gama G, Camoes I, Bernardo F, Andrade P, Nunes JP, Brandao F, Cerqueiragomes M "Influence of non-steroidal anti-inflammatory drugs on renal function and 24h ambulatory blood pressure-reducing effects of enalapril and nifedipine gastrointestinal therapeutic system in hypertensive patients." J Hypertens 13 (1995): 925-31
  7. Kober L, Torp-Pedersen C, Carlsen JE, Bagger H, Eliasen P, Lyngborg K, Videbaek J, Cole DS, Auclert L, Pauly NC, et al. "A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group." N Engl J Med 333 (1995): 1670-6
  8. Nguyen KN, Aursnes I, Kjekshus J "Interaction between enalapril and aspirin on mortality after acute myocardial infarction: subgroup analysis of the cooperative new scandinavian enalapril survival study II (CONSENSUS II)." Am J Cardiol 79 (1997): 115-9
  9. Oosterga M, Anthonio RL, deKam PJ, Kingma JH, Crijns HJGM, vanGilst WH "Effects of aspirin on angiotensin-converting enzyme inhibition and left ventricular dilation one year after acute myocardial infarction." Am J Cardiol 81 (1998): 1178-81
  10. Spaulding C, Charbonnier B, CohenSolal A, Juilliere Y, Kromer EP, Benhamda K, Cador R, Weber S "Acute hemodynamic interaction of aspirin and ticlopidine with enalapril: Results of a double-blind, randomized comparative trial." Circulation 98 (1998): 757-65
  11. Song KH, Fedyk R, Hoover R "Interaction of ACE inhibitors and aspirin in patients with congestive heart failure." Ann Pharmacother 33 (1999): 375-7
  12. Leor J, ReicherReiss H, Goldbourt U, Boyko V, Gottlieb S, Battler A, Behar S "Aspirin and mortality in patients treated with angiotensin-converting enzyme inhibitors - A cohort study of 11,575 patients with coronary artery disease." J Am Coll Cardiol 33 (1999): 1920-5
  13. The Heart Outcomes Prevention Evaluation Study Investigators "Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients." N Engl J Med 342 (2000): 145-53
  14. Massie BM, Teerlink JR "Interaction between aspirin and angiotensin-converting enzyme inhibitors: Real or imagined." Am J Med 109 (2000): 431-3
  15. Meune C, Mahe I, Mourad JJ, Simoneau G, Knellwolf AL, Bergmann JF, Caulin C "Interaction between angiotensin-converting enzyme inhibitors and aspirin: a review." Eur J Clin Pharmacol 56 (2000): 609-20
  16. Mahe I, Meune C, Diemer M, Caulin C, Bergmann JF "Interaction between aspirin and ACE inhibitors in patients with heart failure." Drug Saf 24 (2001): 167-82
  17. Zanchetti A, Hansson L, Leonetti G, et al. "Low-dose aspirin does not interfere with the blood pressure-lowering effects of antihypertensive therapy." J Hypertens 20 (2002): 1015-1022
  18. Ahmed A "Interaction between aspirin and angiotensin-converting enzyme inhibitors: should they be used together in older adults with heart failure?" J Am Geriatr Soc 50 (2002): 1293-6
  19. Lapane KL, Hume AL, Barbour MM, Lipsitz LA "Does aspirin attenuate the effect of angiotensin-converting enzyme inhibitors on health outcomes of very old patients with heart failure?" J Am Geriatr Soc 50 (2002): 1198-204
  20. Nawarskas JJ, Spinler SA "Update on the interaction between aspirin and angiotensin-converting enzyme inhibitors." Pharmacotherapy 20 (2000): 698-710
  21. Nawarskas JJ, Spinler SA "Does aspirin interfere with the therapeutic efficacy of angiotensin-converting enzymen inhibitors in hypertension or congestive heart failure?" Pharmacotherapy 18 (1998): 1041-52
  22. Teo K, Yusuf S, Pfeffer M, et al. "Effects of long-term treatment with angiotensin-converting-enzyme inhibitors in the presence or absence of aspirin: a systematic review." Lancet 360 (2002): 1037
  23. Guazzi M, Brambilla R, Reina G, Tumminello G, Guazzi MD "Aspirin-angiotensin-converting enzyme inhibitor coadministration and mortality in patients with heart failure: a dose-related adverse effect of aspirin." Arch Intern Med 163 (2003): 1574-9
View all 23 references

Switch to consumer interaction data

Moderate

aspirin aluminum hydroxide

Applies to: Aspirin Buffered (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide) and Aspirin Buffered (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide)

MONITOR: Chronic administration of antacids may reduce serum salicylate concentrations in patients receiving large doses of aspirin or other salicylates. The mechanism involves reduction in salicylate renal tubular reabsorption due to urinary alkalinization by antacids, resulting in increased renal salicylate clearance. In three children treated with large doses of aspirin for rheumatic fever, serum salicylate levels declined 30% to 70% during coadministration with a magnesium and aluminum hydroxide antacid. Other studies have found similar, albeit less dramatic results. Antacids reportedly have no effect on the oral bioavailability of aspirin in healthy adults. However, administration of antacids containing either aluminum and magnesium hydroxide or calcium carbonate two hours before aspirin dosing led to reduced absorption of aspirin in uremic patients.

MANAGEMENT: Patients treated chronically with antacids (or oral medications that contain antacids such as didanosine buffered tablets or pediatric oral solution) and large doses of salicylates (i.e. 3 g/day or more) should be monitored for potentially diminished or inadequate analgesic and anti-inflammatory effects, and the salicylate dosage adjusted if necessary.

References

  1. D'Arcy PF, McElnay JC "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm 21 (1987): 607-17
  2. Gaspari F, Vigano G, Locatelli M, Remuzzi G "Influence of antacid administrations on aspirin absorption in patients with chronic renal failure on maintenance hemodialysis." Am J Kidney Dis 11 (1988): 338-42
  3. Furst DE "Clinically important interactions of nonsteroidal antiinflammatory drugs with other medications." J Rheumatol Suppl 17 (1988): 58-62
  4. Miners JO "Drug interactions involving aspirin (acetylsalicylic acid) and salicylic acid." Clin Pharmacokinet 17 (1989): 327-44
  5. Levy G, Lampman T, Kamath BL, Garrettson LK "Decreased serum salicylate concentrations in children with rheumatic fever treated with antacid." N Engl J Med 293 (1975): 323-5
  6. Shastri RA "Effect of antacids on salicylate kinetics." Int J Clin Pharmacol Ther Toxicol 23 (1985): 480-4
  7. Covington TR, eds., Lawson LC, Young LL "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association (1993):
  8. Brouwers JRBJ, Desmet PAGM "Pharmacokinetic-pharmacodynamic drug interactions with nonsteroidal anti-inflammatory drugs." Clin Pharmacokinet 27 (1994): 462-85
  9. "Product Information. Diflunisal (diflunisal)." Chartwell RX, LLC. (2023):
View all 9 references

Switch to consumer interaction data

Moderate

aspirin magnesium hydroxide

Applies to: Aspirin Buffered (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide) and Aspirin Buffered (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide)

MONITOR: Chronic administration of antacids may reduce serum salicylate concentrations in patients receiving large doses of aspirin or other salicylates. The mechanism involves reduction in salicylate renal tubular reabsorption due to urinary alkalinization by antacids, resulting in increased renal salicylate clearance. In three children treated with large doses of aspirin for rheumatic fever, serum salicylate levels declined 30% to 70% during coadministration with a magnesium and aluminum hydroxide antacid. Other studies have found similar, albeit less dramatic results. Antacids reportedly have no effect on the oral bioavailability of aspirin in healthy adults. However, administration of antacids containing either aluminum and magnesium hydroxide or calcium carbonate two hours before aspirin dosing led to reduced absorption of aspirin in uremic patients.

MANAGEMENT: Patients treated chronically with antacids (or oral medications that contain antacids such as didanosine buffered tablets or pediatric oral solution) and large doses of salicylates (i.e. 3 g/day or more) should be monitored for potentially diminished or inadequate analgesic and anti-inflammatory effects, and the salicylate dosage adjusted if necessary.

References

  1. D'Arcy PF, McElnay JC "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm 21 (1987): 607-17
  2. Gaspari F, Vigano G, Locatelli M, Remuzzi G "Influence of antacid administrations on aspirin absorption in patients with chronic renal failure on maintenance hemodialysis." Am J Kidney Dis 11 (1988): 338-42
  3. Furst DE "Clinically important interactions of nonsteroidal antiinflammatory drugs with other medications." J Rheumatol Suppl 17 (1988): 58-62
  4. Miners JO "Drug interactions involving aspirin (acetylsalicylic acid) and salicylic acid." Clin Pharmacokinet 17 (1989): 327-44
  5. Levy G, Lampman T, Kamath BL, Garrettson LK "Decreased serum salicylate concentrations in children with rheumatic fever treated with antacid." N Engl J Med 293 (1975): 323-5
  6. Shastri RA "Effect of antacids on salicylate kinetics." Int J Clin Pharmacol Ther Toxicol 23 (1985): 480-4
  7. Covington TR, eds., Lawson LC, Young LL "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association (1993):
  8. Brouwers JRBJ, Desmet PAGM "Pharmacokinetic-pharmacodynamic drug interactions with nonsteroidal anti-inflammatory drugs." Clin Pharmacokinet 27 (1994): 462-85
  9. "Product Information. Diflunisal (diflunisal)." Chartwell RX, LLC. (2023):
View all 9 references

Switch to consumer interaction data

Minor

calcium carbonate lisinopril

Applies to: Aspirin Buffered (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide) and lisinopril

Coadministration with antacids may decrease the oral bioavailability of captopril and other angiotensin converting enzyme (ACE) inhibitors due to delayed gastric emptying and/or elevated gastric pH. In 10 healthy volunteers, 50 mL of an antacid suspension decreased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of captopril (50 mg single oral dose) by 50% and 42%, respectively, compared to administration after fasting. The relative bioavailability of captopril was 0.66 with antacid, although its hypotensive activity did not seem to be affected. Based on available data, the clinical significance of this interaction appears to be minor. As a precaution, patients may want to consider separating the administration times of ACE inhibitors and antacids or oral medications that contain antacids (e.g., didanosine buffered tablets or pediatric oral solution) by 1 to 2 hours.

References

  1. Mantyla R, Mannisto PT, Vuorela A, Sundberg S, Ottoila P "Impairment of captopril bioavailability by concomitant food and antacid intake." Int J Clin Pharmacol Ther Toxicol 22 (1984): 626-9

Switch to consumer interaction data

Minor

lisinopril aluminum hydroxide

Applies to: lisinopril and Aspirin Buffered (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide)

Coadministration with antacids may decrease the oral bioavailability of captopril and other angiotensin converting enzyme (ACE) inhibitors due to delayed gastric emptying and/or elevated gastric pH. In 10 healthy volunteers, 50 mL of an antacid suspension decreased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of captopril (50 mg single oral dose) by 50% and 42%, respectively, compared to administration after fasting. The relative bioavailability of captopril was 0.66 with antacid, although its hypotensive activity did not seem to be affected. Based on available data, the clinical significance of this interaction appears to be minor. As a precaution, patients may want to consider separating the administration times of ACE inhibitors and antacids or oral medications that contain antacids (e.g., didanosine buffered tablets or pediatric oral solution) by 1 to 2 hours.

References

  1. Mantyla R, Mannisto PT, Vuorela A, Sundberg S, Ottoila P "Impairment of captopril bioavailability by concomitant food and antacid intake." Int J Clin Pharmacol Ther Toxicol 22 (1984): 626-9

Switch to consumer interaction data

Minor

lisinopril magnesium hydroxide

Applies to: lisinopril and Aspirin Buffered (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide)

Coadministration with antacids may decrease the oral bioavailability of captopril and other angiotensin converting enzyme (ACE) inhibitors due to delayed gastric emptying and/or elevated gastric pH. In 10 healthy volunteers, 50 mL of an antacid suspension decreased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of captopril (50 mg single oral dose) by 50% and 42%, respectively, compared to administration after fasting. The relative bioavailability of captopril was 0.66 with antacid, although its hypotensive activity did not seem to be affected. Based on available data, the clinical significance of this interaction appears to be minor. As a precaution, patients may want to consider separating the administration times of ACE inhibitors and antacids or oral medications that contain antacids (e.g., didanosine buffered tablets or pediatric oral solution) by 1 to 2 hours.

References

  1. Mantyla R, Mannisto PT, Vuorela A, Sundberg S, Ottoila P "Impairment of captopril bioavailability by concomitant food and antacid intake." Int J Clin Pharmacol Ther Toxicol 22 (1984): 626-9

Switch to consumer interaction data

Drug and food interactions

Major

aluminum hydroxide food

Applies to: Aspirin Buffered (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide)

GENERALLY AVOID: The concomitant administration of aluminum-containing products (e.g., antacids and phosphate binders) and citrates may significantly increase serum aluminum concentrations, resulting in toxicity. Citrates or citric acid are contained in numerous soft drinks, citrus fruits, juices, and effervescent and dispersible drug formulations. Citrates enhance the gastrointestinal absorption of aluminum by an unknown mechanism, which may involve the formation of a soluble aluminum-citrate complex. Various studies have reported that citrate increases aluminum absorption by 4.6- to 50-fold in healthy subjects. Patients with renal insufficiency are particularly at risk of developing hyperaluminemia and encephalopathy. Fatalities have been reported. Patients with renal failure or on hemodialysis may also be at risk from soft drinks and effervescent and dispersible drug formulations that contain citrates or citric acid. It is unknown what effect citrus fruits or juices would have on aluminum absorption in healthy patients.

MANAGEMENT: The concomitant use of aluminum- and citrate-containing products and foods should be avoided by renally impaired patients. Hemodialysis patients should especially be cautioned about effervescent and dispersible over-the-counter remedies and soft drinks. Some experts also recommend that healthy patients should separate doses of aluminum-containing antacids and citrates by 2 to 3 hours.

ADJUST DOSING INTERVAL: The administration of aluminum-containing antacids with enteral nutrition may result in precipitation, formation of bezoars, and obstruction of feeding tubes. The proposed mechanism is the formation of an insoluble complex between the aluminum and the protein in the enteral feeding. Several cases of esophageal plugs and nasogastric tube obstructions have been reported in patients receiving high-protein liquids and an aluminum hydroxide-magnesium hydroxide antacid or an aluminum hydroxide antacid.

MANAGEMENT: Some experts recommend that antacids should not be mixed with or given after high protein formulations, that the antacid dose should be separated from the feeding by as much as possible, and that the tube should be thoroughly flushed before administration.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  2. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm 66 (2009): 1438-67

Switch to consumer interaction data

Moderate

calcium carbonate food

Applies to: Aspirin Buffered (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide)

ADJUST DOSING INTERVAL: Administration with food may increase the absorption of calcium. However, foods high in oxalic acid (spinach or rhubarb), or phytic acid (bran and whole grains) may decrease calcium absorption.

MANAGEMENT: Calcium may be administered with food to increase absorption. Consider withholding calcium administration for at least 2 hours before or after consuming foods high in oxalic acid or phytic acid.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  2. Canadian Pharmacists Association "e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink" (2006):
  3. Cerner Multum, Inc. "Australian Product Information." O 0
  4. Agencia EspaƱola de Medicamentos y Productos Sanitarios Healthcare "Centro de informaciĆ³n online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html" (2008):
  5. Mangels AR "Bone nutrients for vegetarians." Am J Clin Nutr 100 (2014): epub
  6. Davies NT "Anti-nutrient factors affecting mineral utilization." Proc Nutr Soc 38 (1979): 121-8
View all 6 references

Switch to consumer interaction data

Moderate

lisinopril food

Applies to: lisinopril

GENERALLY AVOID: Moderate-to-high dietary intake of potassium can cause hyperkalemia in some patients who are using angiotensin converting enzyme (ACE) inhibitors. In some cases, affected patients were using a potassium-rich salt substitute. ACE inhibitors can promote hyperkalemia through inhibition of the renin-aldosterone-angiotensin (RAA) system.

MANAGEMENT: It is recommended that patients who are taking ACE inhibitors be advised to avoid moderately high or high potassium dietary intake. Particular attention should be paid to the potassium content of salt substitutes.

References

  1. "Product Information. Vasotec (enalapril)." Merck & Co., Inc PROD (2002):
  2. Good CB, McDermott L "Diet and serum potassium in patients on ACE inhibitors." JAMA 274 (1995): 538
  3. Ray K, Dorman S, Watson R "Severe hyperkalaemia due to the concomitant use of salt substitutes and ACE inhibitors in hypertension: a potentially life threatening interaction." J Hum Hypertens 13 (1999): 717-20

Switch to consumer interaction data

Moderate

aspirin food

Applies to: Aspirin Buffered (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide)

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References

  1. "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn PROD (2002):

Switch to consumer interaction data

Moderate

lisinopril food

Applies to: lisinopril

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol 11 (1991): 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med 101 (1984): 498-9
  3. Feder R "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry 52 (1991): 139
  4. Ellison JM, Milofsky JE, Ely E "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry 51 (1990): 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit 23 (2001): 435-40
  6. Cerner Multum, Inc. "Australian Product Information." O 0
  7. Pacher P, Kecskemeti V "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des 10 (2004): 2463-75
  8. Andrews C, Pinner G "Postural hypotension induced by paroxetine." BMJ 316 (1998): 595
View all 8 references

Switch to consumer interaction data

Minor

aspirin food

Applies to: Aspirin Buffered (aluminum hydroxide / aspirin / calcium carbonate / magnesium hydroxide)

One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.

References

  1. Yoovathaworn KC, Sriwatanakul K, Thithapandha A "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet 11 (1986): 71-6

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.