Skip to main content

Drug Interactions between amoxapine and West-Decon

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

phenylephrine amoxapine

Applies to: West-Decon (chlorpheniramine / phenylephrine / phenylpropanolamine / phenyltoloxamine) and amoxapine

GENERALLY AVOID: Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents and vasoconstrictor-containing local anesthetics. Several-fold increases in the effects of norepinephrine and, to a lesser extent, epinephrine and phenylephrine were reported in healthy subjects pretreated with desipramine, imipramine, or nortriptyline. The mechanism is TCA inhibition of norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, hypertension, throbbing headache, tremor, palpitation, chest pain, and cardiac dysrhythmia have been reported in association with this interaction. Various TCAs have been implicated including amitriptyline, desipramine, imipramine, nortriptyline, and protriptyline. It is not known whether the interaction also occurs with mixed-acting sympathomimetic agents (e.g., dopamine, ephedrine, metaraminol).

MANAGEMENT: Parenteral administration of direct-acting sympathomimetic agents should preferably be avoided during therapy with tricyclic antidepressants except in cases of emergency (e.g., treatment of anaphylaxis). If concomitant use is necessary, initial dose and rate of administration of the sympathomimetic should be reduced, and cardiovascular status including blood pressure should be monitored closely. Although clinical data are lacking, it may be prudent to follow the same precaution with mixed-acting sympathomimetic agents.

References

  1. Mitchell JR, Cavanaugh JH, Arias L, Oates JA "Guanethidine and related agents. III: antagonism by drugs which inhibit the norepinephrine pump in man." J Clin Invest 49 (1970): 1596-604
  2. Svedmyr N "The influence of a tricyclic antidepressive agent (protriptyline) on some of the circulatory effects of noradrenaline and adrenaline in man." Life Sci 7 (1968): 77-84
  3. Boakes AJ, Laurence DR, Teoh PC, Barar FS, Benedikter LT, Pritchard BN "Interactions between sympathomimetic amines and antidepressant agents in man." Br Med J 1 (1973): 311-5
  4. Borg KO, Johnsson G, Jordo L, Lundborg P, Ronn O, Welin-Fogelberg I "Interaction studies between three antidepressant drugs (zimelidine, imipramine and chlorimipramine) and noradrenaline in healthy volunteers and some pharmacokinetics of the drugs studied." Acta Pharmacol Toxicol (Copenh) 45 (1979): 198-205
  5. Linnoila M, Karoum F, Calil HM, Kopin IJ, Potter WZ "Alteration of norepinephrine metabolism with desipramine and zimelidine in depressed patients." Arch Gen Psychiatry 39 (1982): 1025-8
  6. ed., Boakes AJ. Vasoconstrictors in local anaesthetics and tricyclic antidepressants. In: Grahame-Smith, DG "Drug Interactions. QV 38 D7932 1975." Baltimore, MD: University Park Press (1977): 275-83
  7. Fritz H, Hagstam KE, Lindqvist B "Local skin necrosis after intravenous infusion of norepinephrine, and the concept of endotoxinaemia. A clinical study on 10 cases." Acta Med Scand 178 (1965): 403-16
  8. Teba L, Schiebel F, Dedhia HV, Lazzell VA "Beneficial effect of norepinephrine in the treatment of circulatory shock caused by tricyclic antidepressant overdose." Am J Emerg Med 6 (1988): 566-8
  9. Goulet JP, Perusse R, Turcotte JY "Contraindications to vasoconstrictors in dentistry: Part III. Pharmacologic interactions." Oral Surg Oral Med Oral Pathol 74 (1992): 692-7
  10. Niemegeers CJ, Lenaerts FM, Artois KS, Janssen PA "Interaction of drugs with apomorphine, tryptamine and norepinephrine. A new 'in vivo' approach: the ATN-test in rats." Arch Int Pharmacodyn Ther 227 (1977): 238-53
  11. Ghose K "Sympathomimetic amines and tricyclic antidepressant drugs." Neuropharmacology 19 (1980): 1251-4
View all 11 references

Switch to consumer interaction data

Moderate

phenylephrine phenylpropanolamine

Applies to: West-Decon (chlorpheniramine / phenylephrine / phenylpropanolamine / phenyltoloxamine) and West-Decon (chlorpheniramine / phenylephrine / phenylpropanolamine / phenyltoloxamine)

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res 1 (1979): 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther 11 (1970): 656
  3. "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc PROD (2001):
  4. "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals PROD (2001):
  5. "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals PROD (2001):
  6. "Product Information. Focalin (dexmethylphenidate)." Mikart Inc (2001):
  7. "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company (2002):
View all 7 references

Switch to consumer interaction data

Moderate

chlorpheniramine amoxapine

Applies to: West-Decon (chlorpheniramine / phenylephrine / phenylpropanolamine / phenyltoloxamine) and amoxapine

MONITOR: Agents with anticholinergic properties (e.g., sedating antihistamines; antispasmodics; neuroleptics; phenothiazines; skeletal muscle relaxants; tricyclic antidepressants; disopyramide) may have additive effects when used in combination. Excessive parasympatholytic effects may result in paralytic ileus, hyperthermia, heat stroke, and the anticholinergic intoxication syndrome. Peripheral symptoms of intoxication commonly include mydriasis, blurred vision, flushed face, fever, dry skin and mucous membranes, tachycardia, urinary retention, and constipation. Central symptoms may include memory loss, disorientation, incoherence, hallucinations, psychosis, delirium, hyperactivity, twitching or jerking movements, stereotypy, and seizures. Central nervous system-depressant effects may also be additively or synergistically increased when these agents are combined, especially in elderly or debilitated patients. Use of neuroleptics in combination with other neuroleptics or anticholinergic agents may increase the risk of tardive dyskinesia. In addition, some neuroleptics and tricyclic antidepressants may cause prolongation of the QT interval and theoretically, concurrent use of two or more drugs that can cause QT interval prolongation may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death.

MANAGEMENT: Caution is advised when agents with anticholinergic properties are combined, particularly in the elderly and those with underlying organic brain disease, who tend to be more sensitive to the central anticholinergic effects of these drugs and in whom toxicity symptoms may be easily overlooked. Patients should be advised to notify their physician promptly if they experience potential symptoms of anticholinergic intoxication such as abdominal pain, fever, heat intolerance, blurred vision, confusion, and/or hallucinations. Ambulatory patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them. A reduction in anticholinergic dosages may be necessary if excessive adverse effects develop.

References

  1. Stadnyk AN, Glezos JD "Drug-induced heat stroke." Can Med Assoc J 128 (1983): 957-9
  2. Zelman S, Guillan R "Heat stroke in phenothiazine-treated patients: a report of three fatalities." Am J Psychiatry 126 (1970): 1787-90
  3. Mann SC, Boger WP "Psychotropic drugs, summer heat and humidity, and hyperplexia: a danger restated." Am J Psychiatry 135 (1978): 1097-100
  4. Warnes H, Lehmann HE, Ban TA "Adynamic ileus during psychoactive medication: a report of three fatal and five severe cases." Can Med Assoc J 96 (1967): 1112-3
  5. Gershon S, Neubauer H, Sundland DM "Interaction between some anticholinergic agents and phenothiazines." Clin Pharmacol Ther 6 (1965): 749-56
  6. Sarnquist F, Larson CP Jr "Drug-induced heat stroke." Anesthesiology 39 (1973): 348-50
  7. Johnson AL, Hollister LE, Berger PA "The anticholinergic intoxication syndrome: diagnosis and treatment." J Clin Psychiatry 42 (1981): 313-7
  8. Lee BS "Possibility of hyperpyrexia with antipsychotic and anticholinergic drugs." J Clin Psychiatry 47 (1986): 571
  9. Forester D "Fatal drug-induced heat stroke." JACEP 7 (1978): 243-4
  10. Moreau A, Jones BD, Banno V "Chronic central anticholinergic toxicity in manic depressive illness mimicking dementia." Can J Psychiatry 31 (1986): 339-41
  11. Hvizdos AJ, Bennett JA, Wells BG, Rappaport KB, Mendel SA "Anticholinergic psychosis in a patient receiving usual doses of haloperidol." Clin Pharm 2 (1983): 174-8
  12. Cohen MA, Alfonso CA, Mosquera M "Development of urinary retention during treatment with clozapine and meclizine [published erratum appears in Am J Psychiatry 1994 Jun;151(6):952]." Am J Psychiatry 151 (1994): 619-20
  13. "Product Information. Cogentin (benztropine)." Merck & Co., Inc PROD (2001):
  14. Kulik AV, Wilbur R "Delirium and stereotypy from anticholinergic antiparkinson drugs." Prog Neuropsychopharmacol Biol Psychiatry 6 (1982): 75-82
  15. "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories PROD (2001):
View all 15 references

Switch to consumer interaction data

Moderate

phenylpropanolamine amoxapine

Applies to: West-Decon (chlorpheniramine / phenylephrine / phenylpropanolamine / phenyltoloxamine) and amoxapine

MONITOR: The use of tricyclic antidepressants in combination with amphetamines or sympathomimetic appetite suppressants may produce additive cardiovascular effects, increasing the risk of hypertension, cardiac arrhythmias, tachycardia, and fever. The mechanism involves additive pharmacodynamic effects resulting from increased norepinephrine release by sympathomimetic agents and inhibition of norepinephrine reuptake by tricyclic antidepressants. A pharmacokinetic interaction is also possible between tricyclic antidepressants and amphetamines, since many of these agents are metabolized by CYP450 2D6. Increased plasma levels of one or both drugs may occur during coadministration.

MANAGEMENT: Close monitoring of cardiovascular status is recommended for patients receiving this combination. Patients should be advised to promptly report symptoms such as fever, headache, or fast or irregular heartbeats.

References

  1. Raisfeld IH "Cardiovascular complications of antidepressant therapy: interactions at the adrenergic neuron." Am Heart J 83 (1972): 129-33
  2. Limbird LE eds., Gilman AG, Hardman JG "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: McGraw-Hill (1995):
  3. Nielsen KK, Flinois JP, Beaune P, Brosen K "The biotransformation of clomipramine in vitro, identification of the cytochrome p450s responsible for the separate metabolic pathways." J Pharmacol Exp Ther 277 (1996): 1659-64
  4. Gunne LM, Antonijevic S, Jonsson J "Effect of fenfluramine on steady state plasma levels of amitriptyline." Postgrad Med J 51 Suppl 1 (1975): 117
  5. Markowitz JS, Patrick KS "Pharmacokinetic and pharmacodynamic drug interactions in the treatment of attention-deficit hyperactivity disorder." Clin Pharmacokinet 40 (2001): 753-72
  6. Kirchheiner J, Muller G, Meineke I, Wernecke KD, Roots I, Brockmoller J "Effects of polymorphisms in CYP2D6, CYP2C9, and CYP2C19 on trimipramine pharmacokinetics." J Clin Psychopharmacol 23 (2003): 459-66
  7. Kirchheiner J, Meineke I, Muller G, Roots I, Brockmoller J "Contributions of CYP2D6, CYP2C9 and CYP2C19 to the biotransformation of E- and Z-doxepin in healthy volunteers." Pharmacogenetics 12 (2002): 571-80
  8. Haritos VS, Ghabrial H, Ahokas JT, Ching MS "Role of cytochrome P450 2D6 (CYP2D6) in the stereospecific metabolism of E- and Z-doxepin." Pharmacogenetics 10 (2000): 591-603
View all 8 references

Switch to consumer interaction data

Moderate

chlorpheniramine phenyltoloxamine

Applies to: West-Decon (chlorpheniramine / phenylephrine / phenylpropanolamine / phenyltoloxamine) and West-Decon (chlorpheniramine / phenylephrine / phenylpropanolamine / phenyltoloxamine)

MONITOR: Agents with anticholinergic properties (e.g., sedating antihistamines; antispasmodics; neuroleptics; phenothiazines; skeletal muscle relaxants; tricyclic antidepressants; disopyramide) may have additive effects when used in combination. Excessive parasympatholytic effects may result in paralytic ileus, hyperthermia, heat stroke, and the anticholinergic intoxication syndrome. Peripheral symptoms of intoxication commonly include mydriasis, blurred vision, flushed face, fever, dry skin and mucous membranes, tachycardia, urinary retention, and constipation. Central symptoms may include memory loss, disorientation, incoherence, hallucinations, psychosis, delirium, hyperactivity, twitching or jerking movements, stereotypy, and seizures. Central nervous system-depressant effects may also be additively or synergistically increased when these agents are combined, especially in elderly or debilitated patients. Use of neuroleptics in combination with other neuroleptics or anticholinergic agents may increase the risk of tardive dyskinesia. In addition, some neuroleptics and tricyclic antidepressants may cause prolongation of the QT interval and theoretically, concurrent use of two or more drugs that can cause QT interval prolongation may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death.

MANAGEMENT: Caution is advised when agents with anticholinergic properties are combined, particularly in the elderly and those with underlying organic brain disease, who tend to be more sensitive to the central anticholinergic effects of these drugs and in whom toxicity symptoms may be easily overlooked. Patients should be advised to notify their physician promptly if they experience potential symptoms of anticholinergic intoxication such as abdominal pain, fever, heat intolerance, blurred vision, confusion, and/or hallucinations. Ambulatory patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them. A reduction in anticholinergic dosages may be necessary if excessive adverse effects develop.

References

  1. Stadnyk AN, Glezos JD "Drug-induced heat stroke." Can Med Assoc J 128 (1983): 957-9
  2. Zelman S, Guillan R "Heat stroke in phenothiazine-treated patients: a report of three fatalities." Am J Psychiatry 126 (1970): 1787-90
  3. Mann SC, Boger WP "Psychotropic drugs, summer heat and humidity, and hyperplexia: a danger restated." Am J Psychiatry 135 (1978): 1097-100
  4. Warnes H, Lehmann HE, Ban TA "Adynamic ileus during psychoactive medication: a report of three fatal and five severe cases." Can Med Assoc J 96 (1967): 1112-3
  5. Gershon S, Neubauer H, Sundland DM "Interaction between some anticholinergic agents and phenothiazines." Clin Pharmacol Ther 6 (1965): 749-56
  6. Sarnquist F, Larson CP Jr "Drug-induced heat stroke." Anesthesiology 39 (1973): 348-50
  7. Johnson AL, Hollister LE, Berger PA "The anticholinergic intoxication syndrome: diagnosis and treatment." J Clin Psychiatry 42 (1981): 313-7
  8. Lee BS "Possibility of hyperpyrexia with antipsychotic and anticholinergic drugs." J Clin Psychiatry 47 (1986): 571
  9. Forester D "Fatal drug-induced heat stroke." JACEP 7 (1978): 243-4
  10. Moreau A, Jones BD, Banno V "Chronic central anticholinergic toxicity in manic depressive illness mimicking dementia." Can J Psychiatry 31 (1986): 339-41
  11. Hvizdos AJ, Bennett JA, Wells BG, Rappaport KB, Mendel SA "Anticholinergic psychosis in a patient receiving usual doses of haloperidol." Clin Pharm 2 (1983): 174-8
  12. Cohen MA, Alfonso CA, Mosquera M "Development of urinary retention during treatment with clozapine and meclizine [published erratum appears in Am J Psychiatry 1994 Jun;151(6):952]." Am J Psychiatry 151 (1994): 619-20
  13. "Product Information. Cogentin (benztropine)." Merck & Co., Inc PROD (2001):
  14. Kulik AV, Wilbur R "Delirium and stereotypy from anticholinergic antiparkinson drugs." Prog Neuropsychopharmacol Biol Psychiatry 6 (1982): 75-82
  15. "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories PROD (2001):
View all 15 references

Switch to consumer interaction data

Moderate

amoxapine phenyltoloxamine

Applies to: amoxapine and West-Decon (chlorpheniramine / phenylephrine / phenylpropanolamine / phenyltoloxamine)

MONITOR: Agents with anticholinergic properties (e.g., sedating antihistamines; antispasmodics; neuroleptics; phenothiazines; skeletal muscle relaxants; tricyclic antidepressants; disopyramide) may have additive effects when used in combination. Excessive parasympatholytic effects may result in paralytic ileus, hyperthermia, heat stroke, and the anticholinergic intoxication syndrome. Peripheral symptoms of intoxication commonly include mydriasis, blurred vision, flushed face, fever, dry skin and mucous membranes, tachycardia, urinary retention, and constipation. Central symptoms may include memory loss, disorientation, incoherence, hallucinations, psychosis, delirium, hyperactivity, twitching or jerking movements, stereotypy, and seizures. Central nervous system-depressant effects may also be additively or synergistically increased when these agents are combined, especially in elderly or debilitated patients. Use of neuroleptics in combination with other neuroleptics or anticholinergic agents may increase the risk of tardive dyskinesia. In addition, some neuroleptics and tricyclic antidepressants may cause prolongation of the QT interval and theoretically, concurrent use of two or more drugs that can cause QT interval prolongation may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death.

MANAGEMENT: Caution is advised when agents with anticholinergic properties are combined, particularly in the elderly and those with underlying organic brain disease, who tend to be more sensitive to the central anticholinergic effects of these drugs and in whom toxicity symptoms may be easily overlooked. Patients should be advised to notify their physician promptly if they experience potential symptoms of anticholinergic intoxication such as abdominal pain, fever, heat intolerance, blurred vision, confusion, and/or hallucinations. Ambulatory patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them. A reduction in anticholinergic dosages may be necessary if excessive adverse effects develop.

References

  1. Stadnyk AN, Glezos JD "Drug-induced heat stroke." Can Med Assoc J 128 (1983): 957-9
  2. Zelman S, Guillan R "Heat stroke in phenothiazine-treated patients: a report of three fatalities." Am J Psychiatry 126 (1970): 1787-90
  3. Mann SC, Boger WP "Psychotropic drugs, summer heat and humidity, and hyperplexia: a danger restated." Am J Psychiatry 135 (1978): 1097-100
  4. Warnes H, Lehmann HE, Ban TA "Adynamic ileus during psychoactive medication: a report of three fatal and five severe cases." Can Med Assoc J 96 (1967): 1112-3
  5. Gershon S, Neubauer H, Sundland DM "Interaction between some anticholinergic agents and phenothiazines." Clin Pharmacol Ther 6 (1965): 749-56
  6. Sarnquist F, Larson CP Jr "Drug-induced heat stroke." Anesthesiology 39 (1973): 348-50
  7. Johnson AL, Hollister LE, Berger PA "The anticholinergic intoxication syndrome: diagnosis and treatment." J Clin Psychiatry 42 (1981): 313-7
  8. Lee BS "Possibility of hyperpyrexia with antipsychotic and anticholinergic drugs." J Clin Psychiatry 47 (1986): 571
  9. Forester D "Fatal drug-induced heat stroke." JACEP 7 (1978): 243-4
  10. Moreau A, Jones BD, Banno V "Chronic central anticholinergic toxicity in manic depressive illness mimicking dementia." Can J Psychiatry 31 (1986): 339-41
  11. Hvizdos AJ, Bennett JA, Wells BG, Rappaport KB, Mendel SA "Anticholinergic psychosis in a patient receiving usual doses of haloperidol." Clin Pharm 2 (1983): 174-8
  12. Cohen MA, Alfonso CA, Mosquera M "Development of urinary retention during treatment with clozapine and meclizine [published erratum appears in Am J Psychiatry 1994 Jun;151(6):952]." Am J Psychiatry 151 (1994): 619-20
  13. "Product Information. Cogentin (benztropine)." Merck & Co., Inc PROD (2001):
  14. Kulik AV, Wilbur R "Delirium and stereotypy from anticholinergic antiparkinson drugs." Prog Neuropsychopharmacol Biol Psychiatry 6 (1982): 75-82
  15. "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories PROD (2001):
View all 15 references

Switch to consumer interaction data

Drug and food interactions

Moderate

chlorpheniramine food

Applies to: West-Decon (chlorpheniramine / phenylephrine / phenylpropanolamine / phenyltoloxamine)

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology 15 (1986): 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc. (1990):
  3. "Product Information. Fycompa (perampanel)." Eisai Inc (2012):
  4. "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc (2015):
View all 4 references

Switch to consumer interaction data

Moderate

phenylpropanolamine food

Applies to: West-Decon (chlorpheniramine / phenylephrine / phenylpropanolamine / phenyltoloxamine)

GENERALLY AVOID: Alcohol may potentiate the central nervous system and cardiovascular effects of centrally-acting appetite suppressants. In one study, concurrent administration of methamphetamine (30 mg intravenously) and ethanol (1 gm/kg orally over 30 minutes) increased heart rate by 24 beats/minute compared to methamphetamine alone. This increases cardiac work and myocardial oxygen consumption, which may lead to more adverse cardiovascular effects than either agent alone. Subjective effects of ethanol were diminished in the eight study subjects, but those of methamphetamine were not affected. The pharmacokinetics of methamphetamine were also unaffected except for a decrease in the apparent volume of distribution at steady state.

MANAGEMENT: Concomitant use of centrally-acting appetite suppressants and alcohol should be avoided if possible, especially in patients with a history of cardiovascular disease. Patients should be counselled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Mendelson J, Jones RT, Upton R, Jacob P 3rd "Methamphetamine and ethanol interactions in humans." Clin Pharmacol Ther 57 (1995): 559-68
  2. "Product Information. Didrex (benzphetamine)." Pharmacia and Upjohn PROD (2001):
  3. "Product Information. Suprenza (phentermine)." Akrimax Pharmaceuticals (2012):

Switch to consumer interaction data

Moderate

phenyltoloxamine food

Applies to: West-Decon (chlorpheniramine / phenylephrine / phenylpropanolamine / phenyltoloxamine)

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology 15 (1986): 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc. (1990):
  3. "Product Information. Fycompa (perampanel)." Eisai Inc (2012):
  4. "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc (2015):
View all 4 references

Switch to consumer interaction data

Moderate

amoxapine food

Applies to: amoxapine

GENERALLY AVOID: Concomitant use of ethanol and a tricyclic antidepressant (TCA) may result altered TCA plasma levels and efficacy, and additive impairment of motor skills, especially driving skills. Acute ethanol ingestion may inhibit TCA metabolism, while chronic ingestion of large amounts of ethanol may induce hepatic TCA metabolism.

MANAGEMENT: Patients should be advised to avoid alcohol during TCA therapy. Alcoholics who have undergone detoxification should be monitored for decreased TCA efficacy. Dosage adjustments may be required.

References

  1. Dorian P, Sellers EM, Reed KL, et al. "Amitriptyline and ethanol: pharmacokinetic and pharmacodynamic interaction." Eur J Clin Pharmacol 25 (1983): 325-31
  2. Warrington SJ, Ankier SI, Turner P "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology 15 (1986): 31-7
  3. Sandoz M, Vandel S, Vandel B, Bonin B, Allers G, Volmat R "Biotransformation of amitriptyline in alcoholic depressive patients." Eur J Clin Pharmacol 24 (1983): 615-21
  4. Ciraulo DA, Barnhill JG, Jaffe JH "Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers." Clin Pharmacol Ther 43 (1988): 509-18
  5. Seppala T, Linnoila M, Elonen E, Mattila MJ, Makl M "Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving." Clin Pharmacol Ther 17 (1975): 515-22
  6. Ciraulo DA, Barnhill JG, Jaffe JH, Ciraulo AM, Tarmey MF "Intravenous pharmacokinetics of 2-hydroxyimipramine in alcoholics and normal controls." J Stud Alcohol 51 (1990): 366-72
  7. Ciraulo DA, Alderson LM, Chapron DJ, Jaffe JH, Subbarao B, Kramer PA "Imipramine disposition in alcoholics." J Clin Psychopharmacol 2 (1982): 2-7
View all 7 references

Switch to consumer interaction data

Moderate

phenylephrine food

Applies to: West-Decon (chlorpheniramine / phenylephrine / phenylpropanolamine / phenyltoloxamine)

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res 1 (1979): 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther 11 (1970): 656
  3. "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc PROD (2001):
  4. "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals PROD (2001):
  5. "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals PROD (2001):
  6. "Product Information. Focalin (dexmethylphenidate)." Mikart Inc (2001):
  7. "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company (2002):
View all 7 references

Switch to consumer interaction data

Moderate

phenylpropanolamine food

Applies to: West-Decon (chlorpheniramine / phenylephrine / phenylpropanolamine / phenyltoloxamine)

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res 1 (1979): 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther 11 (1970): 656
  3. "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc PROD (2001):
  4. "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals PROD (2001):
  5. "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals PROD (2001):
  6. "Product Information. Focalin (dexmethylphenidate)." Mikart Inc (2001):
  7. "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company (2002):
View all 7 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.