Skip to main content

Drug Interactions between amlodipine / atorvastatin and levodopa

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

levodopa amLODIPine

Applies to: levodopa and amlodipine / atorvastatin

MONITOR: The hypotensive effects of levodopa and antihypertensive agents may be additive. Postural hypotension may occur.

MANAGEMENT: Hemodynamic responses should be monitored during coadministration, especially during the first few weeks of therapy. Dose adjustments of the antihypertensive agent may be required. Patients should be advised to notify their physician if they experience dizziness or syncope.

References

  1. (2003) "Product Information. Stalevo 150 (carbidopa/entacapone/levodopa)." Novartis Pharmaceuticals

Switch to consumer interaction data

Moderate

levodopa atorvastatin

Applies to: levodopa and amlodipine / atorvastatin

MONITOR: Polyneuropathy has been reported during treatment with levodopa/carbidopa combinations, and concurrent use of other medications that are also associated with this adverse effect may potentiate the risk and/or severity of nerve damage. Polyneuropathy has most commonly been observed in patients receiving levodopa/carbidopa by continuous intestinal infusion, with a frequency of up to 5.8% in clinical trials. Cases were generally consistent with axonal polyneuropathy, manifested as sensory or sensorimotor neuropathies, with subacute or chronic onset. Reported symptoms primarily included numbness, tingling, decreased sensation, weakness, and pain in the legs, hands, feet, and extremities. Many of these patients had deficiencies in folic acid, vitamin B12 and vitamin B6 as well as elevated homocysteine levels. However, there was insufficient information to determine the potential role of vitamin deficiencies in the etiology of neuropathy associated with the treatment. It is also unknown whether there is a causal relationship between polyneuropathy and treatment with levodopa/carbidopa combinations.

MANAGEMENT: Before initiating treatment with enteral formulations of levodopa/carbidopa, the manufacturers recommend evaluating patients for history or signs of polyneuropathy and known risk factors such as diabetes mellitus, hypothyroidism, or concomitant use of other medications associated with polyneuropathy. For patients with preexisting polyneuropathy, the benefits of treatment should be carefully weighed against the potential risks, including the potential for impaired mobility. Plasma concentrations of vitamin B12, vitamin B6, homocysteine, methylmalonic acid, and folic acid should be obtained at baseline and at regular intervals during treatment. Patients who develop symptoms of peripheral neuropathy and low plasma concentrations of vitamin B6 and/or vitamin B12, or elevated homocysteine or methylmalonic acid concentrations, may benefit from vitamin supplementation. Physicians should carefully evaluate if a dose adjustment is warranted and assess the benefit versus risk of continued treatment.

References

  1. (2022) "Product Information. Duopa (carbidopa-levodopa)." AbbVie US LLC
  2. (2022) "Product Information. Duodopa (carbidopa-levodopa)." AbbVie Corporation
  3. (2021) "Product Information. Duodopa (carbidopa-levodopa)." AbbVie Pty Ltd, 18

Switch to consumer interaction data

Moderate

amLODIPine atorvastatin

Applies to: amlodipine / atorvastatin and amlodipine / atorvastatin

MONITOR: Coadministration with inhibitors of CYP450 3A4 may increase the plasma concentrations of HMG-CoA reductase inhibitors (i.e., statins) that are metabolized by the isoenzyme. Lovastatin and simvastatin are particularly susceptible because of their low oral bioavailability, but others such as atorvastatin and cerivastatin may also be affected. High levels of HMG-CoA reductase inhibitory activity in plasma is associated with an increased risk of musculoskeletal toxicity. Myopathy manifested as muscle pain and/or weakness associated with grossly elevated creatine kinase exceeding ten times the upper limit of normal has been reported occasionally. Rhabdomyolysis has also occurred rarely, which may be accompanied by acute renal failure secondary to myoglobinuria and may result in death. Clinically significant interactions have been reported with potent CYP450 3A4 inhibitors such as macrolide antibiotics, azole antifungals, protease inhibitors and nefazodone, and moderate inhibitors such as amiodarone, cyclosporine, danazol, diltiazem and verapamil.

MANAGEMENT: Caution is recommended if atorvastatin, cerivastatin, lovastatin, simvastatin, or red yeast rice (which contains lovastatin) is prescribed with a CYP450 3A4 inhibitor. It is advisable to monitor lipid levels and use the lowest effective statin dose. All patients receiving statin therapy should be advised to promptly report any unexplained muscle pain, tenderness or weakness, particularly if accompanied by fever, malaise and/or dark colored urine. Therapy should be discontinued if creatine kinase is markedly elevated in the absence of strenuous exercise or if myopathy is otherwise suspected or diagnosed. Fluvastatin, pravastatin, and rosuvastatin are not expected to interact with CYP450 3A4 inhibitors.

References

  1. Spach DH, Bauwens JE, Clark CD, Burke WG (1991) "Rhabdomyolysis associated with lovastatin and erythromycin use." West J Med, 154, p. 213-5
  2. Ayanian JZ, Fuchs CS, Stone RM (1988) "Lovastatin and rhabdomyolysis." Ann Intern Med, 109, p. 682-3
  3. Corpier CL, Jones PH, Suki WN, et al. (1988) "Rhabdomyolysis and renal injury with lovastatin use. Report of two cases in cardiac transplant recipients." JAMA, 260, p. 239-41
  4. East C, Alivizatos PA, Grundy SM, Jones PH, Farmer JA (1988) "Rhabdomyolysis in patients receiving lovastatin after cardiac transplantation." N Engl J Med, 318, p. 47-8
  5. Norman DJ, Illingworth DR, Munson J, Hosenpud J (1988) "Myolysis and acute renal failure in a heart-transplant recipient receiving lovastatin." N Engl J Med, 318, p. 46-7
  6. (2002) "Product Information. Mevacor (lovastatin)." Merck & Co., Inc
  7. (2001) "Product Information. Zocor (simvastatin)." Merck & Co., Inc
  8. Dallaire M, Chamberland M (1994) "Severe rhabdomyolysis in a patient receiving lovastatin, danazol and doxycycline." Can Med Assoc J, 150, p. 1991-4
  9. Campana C, Iacona I, Regassi MB, et al. (1995) "Efficacy and pharmacokinetics of simvastatin in heart transplant recipients." Ann Pharmacother, 29, p. 235-9
  10. Lees RS, Lees AM (1995) "Rhabdomyolysis from the coadministration of lovastatin and the antifungal agent itraconazole." N Engl J Med, 333, p. 664-5
  11. Zhou LX, Finley DK, Hassell AE, Holtzman JL (1995) "Pharmacokinetic interaction between isradipine and lovastatin in normal, female and male volunteers." J Pharmacol Exp Ther, 273, p. 121-7
  12. Neuvonen PJ, Jalava KM (1996) "Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 60, p. 54-61
  13. Horn M (1996) "Coadministration of itraconazole with hypolipidemic agents may induce rhabdomyolysis in healthy individuals." Arch Dermatol, 132, p. 1254
  14. (2001) "Product Information. Lipitor (atorvastatin)." Parke-Davis
  15. Jacobson RH, Wang P, Glueck CJ (1997) "Myositis and rhabdomyolysis associated with concurrent use of simvastatin and nefazodone." JAMA, 277, p. 296
  16. Jody DN (1997) "Myositis and rhabdomyolysis associated with concurrent use of simvastatin and nefazodone." JAMA, 277, p. 296-7
  17. (2001) "Product Information. Baycol (cerivastatin)." Bayer
  18. Grunden JW, Fisher KA (1997) "Lovastatin-induced rhabdomyolysis possibly associated with clarithromycin and azithromycin." Ann Pharmacother, 31, p. 859-63
  19. Wong PW, Dillard TA, Kroenke K (1998) "Multiple organ toxicity from addition of erythromycin to long-term lovastatin therapy." South Med J, 91, p. 202-5
  20. Neuvonen PJ, Kantola T, Kivisto KT (1998) "Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole." Clin Pharmacol Ther, 63, p. 332-41
  21. Agbin NE, Brater DC, Hall SD (1997) "Interaction of diltiazem with lovastatin and pravastatin." Clin Pharmacol Ther, 61, p. 201
  22. Kivisto KT, Kantola T, Neuvonen PJ (1998) "Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin." Br J Clin Pharmacol, 46, p. 49-53
  23. Kantola T, Kivisto KT, Neuvonen PJ (1998) "Effect of itraconazole on the pharmacokinetics of atorvastatin." Clin Pharmacol Ther, 64, p. 58-65
  24. Kantola T, Kivisto KT, Neuvonen PJ (1998) "Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations." Clin Pharmacol Ther, 64, p. 177-82
  25. Azie NE, Brater DC, Becker PA, Jones DR, Hall SD (1998) "The interaction of diltiazem with lovastatin and pravastatin." Clin Pharmacol Ther, 64, p. 369-77
  26. Lomaestro BM, Piatek MA (1998) "Update on drug interactions with azole antifungal agents." Ann Pharmacother, 32, p. 915-28
  27. Kantola T, Kivisto KT, Neuvonen PJ (1999) "Effect of itraconazole on cerivastatin pharmacokinetics." Eur J Clin Pharmacol, 54, p. 851-5
  28. Malaty LI, Kuper JJ (1999) "Drug interactions of HIV protease inhibitors." Drug Safety, 20, p. 147-69
  29. Siedlik PH, Olson SC, Yang BB, Stern RH (1999) "Erythromycin coadministration increases plasma atorvastatin concentrations." J Clin Pharmacol, 39, p. 501-4
  30. Barry M, Mulcahy F, Merry C, Gibbons S, Back D (1999) "Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection." Clin Pharmacokinet, 36, p. 289-304
  31. Rodriguez JA, CrespoLeiro MG, Paniagua MJ, Cuenca JJ, Hermida LF, Juffe A, CastroBeiras A (1999) "Rhabdomyolysis in heart transplant patients on HMG-CoA reductase inhibitors and cyclosporine." Transplant Proc, 31, p. 2522-3
  32. Gruer PJK, Vega JM, Mercuri MF, Dobrinska MR, Tobert JA (1999) "Concomitant use of cytochrome P450 3A4 inhibitors and simvastatin." Am J Cardiol, 84, p. 811-5
  33. Gilad R, Lampl Y (1999) "Rhabdomyolysis induced by simvastatin and ketoconazole treatment." Clin Neuropharmacol, 22, p. 295-7
  34. Gullestad L, Nordal KP, Berg KJ, Cheng H, Schwartz MS, Simonsen S (1999) "Interaction between lovastatin and cyclosporine A after heart and kidney transplantation." Transplant Proc, 31, p. 2163-5
  35. Yeo KR, Yeo WW, Wallis EJ, Ramsay LE (1999) "Enhanced cholesterol reduction by simvastatin in diltiazem-treated patients." Br J Clin Pharmacol, 48, p. 610-5
  36. Maltz HC, Balog DL, Cheigh JS (1999) "Rhabdomyolysis associated with concomitant use of atorvastatin and cyclosporine." Ann Pharmacother, 33, p. 1176-9
  37. Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
  38. Jardine A, Holdaas H (1999) "Fluvastatin in combination with cyclosporin in renal transplant recipients: a review of clinical and safety experience." J Clin Pharm Ther, 24, p. 397-408
  39. Mousa O, Brater DC, Sundblad KJ, Hall SD (2000) "The interaction of diltiazem with simvastatin." Clin Pharmacol Ther, 67, p. 267-74
  40. Westphal JF (2000) "Macrolide - induced clinically relevant drug interactions with cytochrome P-450 (CYP) 3A4: an update focused on clarithromycin, azithromycin, and dirithromycin." Br J Clin Pharmacol, 50, p. 285-95
  41. Kusus M, Stapleton DD, Lertora JJL, Simon EE, Dreisbach AW (2000) "Rhabdomyolysis and acute renal failure in a cardiac transplant recipient due to multiple drug interactions." Am J Med Sci, 320, p. 394-7
  42. Lee AJ, Maddix DS (2001) "Rhabdomyolysis secondary to a drug interaction between simvastatin and clarithromycin." Ann Pharmacother, 35, p. 26-31
  43. Yeo KR, Yeo WW (2001) "Inhibitory effects of verapamil and diltiazem on simvastatin metabolism in human liver microsomes." Br J Clin Pharmacol, 51, p. 461-70
  44. Arnadottir M, Eriksson LO, Thysell H, Karkas JD (1993) "Plasma concentration profiles of simvastatin 3-hydroxy- 3-methylglutaryl-coenzyme A reductase inhibitory activity in kidney transplant recipients with and without ciclosporin." Nephron, 65, p. 410-3
  45. Corsini A, Bellosta S, Baetta R, Fumagalli R, Paoletti R, Bernini F (1999) "New insights into the pharmacodynamic and pharmacokinetic properties of statins." Pharmacol Ther, 84, p. 413-28
  46. Garnett WR (1995) "Interactions with hydroxymethylglutaryl-coenzyme A reductase inhibitors." Am J Health Syst Pharm, 52, p. 1639-45
  47. Omar MA, Wilson JP (2002) "FDA adverse event reports on statin-associated rhabdomyolysis." Ann Pharmacother, 36, p. 288-95
  48. Fichtenbaum CJ, Gerber JG, Rosenkranz SL, et al. (2002) "Pharmacokinetic interactions between protease inhibitors and statins in HIV seronegative volunteers: ACTG Study A5047." AIDS, 16, p. 569-577
  49. Amsden GW, Kuye O, Wei GC (2002) "A study of the interaction potential of azithromycin and clarithromycin with atorvastatin in healthy volunteers." J Clin Pharmacol, 42, p. 444-9
  50. Williams D, Feely J (2002) "Pharmacokinetic-Pharmacodynamic Drug Interactions with HMG-CoA Reductase Inhibitors." Clin Pharmacokinet, 41, p. 343-70
  51. Thompson M, Samuels S (2002) "Rhabdomyolysis with simvastatin and nefazodone." Am J Psychiatry, 159, p. 1607
  52. Huynh T, Cordato D, Yang F, et al. (2002) "HMG coA reductase-inhibitor-related myopathy and the influence of drug interactions." Intern Med J, 32(9-10), p. 486-90
  53. Paoletti R, Corsini A, Bellosta S (2002) "Pharmacological interactions of statins." Atheroscler Suppl, 3, p. 35-40
  54. Sipe BE, Jones RJ, Bokhart GH (2003) "Rhabdomyolysis Causing AV Blockade Due to Possible Atorvastatin, Esomeprazole, and Clarithromycin Interaction." Ann Pharmacother, 37, p. 808-11
  55. de Denus S, Spinler SA (2003) "Amiodarone's role in simvastatin-associated rhabdomyolysis." Am J Health Syst Pharm, 60, 1791; author reply 1791-2
  56. Skrabal MZ, Stading JA, Monaghan MS (2003) "Rhabdomyolysis associated with simvastatin-nefazodone therapy." South Med J, 96, p. 1034-5
  57. Andreou ER, Ledger S (2003) "Potential drug interaction between simvastatin and danazol causing rhabdomyolysis." Can J Clin Pharmacol, 10, p. 172-4
  58. Roten L, Schoenenberger RA, Krahenbuhl S, Schlienger RG (2004) "Rhabdomyolysis in association with simvastatin and amiodarone." Ann Pharmacother, 38, p. 978-81
  59. Jacobson TA (2004) "Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors." Am J Cardiol, 94, p. 1140-6
  60. Chouhan UM, Chakrabarti S, Millward LJ (2005) "Simvastatin interaction with clarithromycin and amiodarone causing myositis." Ann Pharmacother, 39, p. 1760-1
  61. Karnik NS, Maldonado JR (2005) "Antidepressant and statin interactions: a review and case report of simvastatin and nefazodone-induced rhabdomyolysis and transaminitis." Psychosomatics, 46, p. 565-8
  62. Neuvonen PJ, Backman JT, Niemi M (2008) "Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin." Clin Pharmacokinet, 47, p. 463-74
  63. (2021) "Product Information. Qelbree (viloxazine)." Supernus Pharmaceuticals Inc
View all 63 references

Switch to consumer interaction data

Drug and food interactions

Moderate

levodopa food

Applies to: levodopa

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of levodopa. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MONITOR: Limited clinical data suggest that high protein content in the diet may reduce or cause fluctuations in the clinical response to oral and enteral formulations of levodopa in patients with Parkinson's disease. Proposed mechanisms include delayed gastric emptying, decreased levodopa absorption when taken with a protein rich diet, and competition with certain amino acids for transport across the gut wall and/or the blood brain barrier. Data have been conflicting. Clinical studies have variously reported no effect, reduced levodopa absorption with low-protein meals, reduced effects of oral and enteral formulations of levodopa with high daily protein intake, and no differences compared to fasting with high-protein meals. Neuroleptic malignant-like symptoms were reported in a patient with Parkinson's disease who was receiving pramipexole, entacapone, and immediate-release levodopa/carbidopa, after the protein content of his enteral feedings via nasogastric tube was increased from 0.88 g/kg/day to 1.8 g/kg/day; symptoms improved after the protein was reduced to 1 g/kg/day and bromocriptine was administered. Another patient receiving immediate-release carbidopa/levodopa, pramipexole, and entacapone experienced severe rigidity after initiation of continuous enteral nutrition via oral gastric tube containing 1.4 g/kg/day of protein; his Parkinsonian symptoms improved after the protein content was reduced to 0.9 g/kg/day, the feeding was changed to bolus feedings, and the levodopa was administered between boluses.

MANAGEMENT: In general, alcohol consumption should be avoided or limited during treatment with CNS-depressant agents. Until more data are available, it is advisable to avoid large fluctuations in daily protein intake and to monitor patients for altered effects of oral and enteral levodopa formulations if the protein content of the diet is increased.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT (2009) "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm, 66, p. 1438-67
  3. (2022) "Product Information. Duopa (carbidopa-levodopa)." AbbVie US LLC
  4. (2021) "Product Information. Duodopa (carbidopa-levodopa)." AbbVie Pty Ltd, 18
  5. (2023) "Product Information. Vyalev (foscarbidopa-foslevodopa)." AbbVie Corporation
  6. (2022) "Product Information. Dhivy (carbidopa-levodopa)." Avion Pharmaceuticals
View all 6 references

Switch to consumer interaction data

Moderate

atorvastatin food

Applies to: amlodipine / atorvastatin

GENERALLY AVOID: Coadministration with grapefruit juice may increase the plasma concentrations of atorvastatin. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. When a single 40 mg dose of atorvastatin was coadministered with 240 mL of grapefruit juice, atorvastatin peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 16% and 37%, respectively. Greater increases in Cmax (up to 71%) and/or AUC (up to 2.5 fold) have been reported with excessive consumption of grapefruit juice (>=750 mL to 1.2 liters per day). Clinically, high levels of HMG-CoA reductase inhibitory activity in plasma is associated with an increased risk of musculoskeletal toxicity. Myopathy manifested as muscle pain and/or weakness associated with grossly elevated creatine kinase exceeding ten times the upper limit of normal has been reported occasionally. Rhabdomyolysis has also occurred rarely, which may be accompanied by acute renal failure secondary to myoglobinuria and may result in death.

ADJUST DOSING INTERVAL: Fibres such as oat bran and pectin may diminish the pharmacologic effects of HMG-CoA reductase inhibitors by interfering with their absorption from the gastrointestinal tract.

MANAGEMENT: Patients receiving therapy with atorvastatin should limit their consumption of grapefruit juice to no more than 1 liter per day. Patients should be advised to promptly report any unexplained muscle pain, tenderness or weakness, particularly if accompanied by fever, malaise and/or dark colored urine. Therapy should be discontinued if creatine kinase is markedly elevated in the absence of strenuous exercise or if myopathy is otherwise suspected or diagnosed. In addition, patients should either refrain from the use of oat bran and pectin or, if concurrent use cannot be avoided, to separate the administration times by at least 2 to 4 hours.

References

  1. Richter WO, Jacob BG, Schwandt P (1991) "Interaction between fibre and lovastatin." Lancet, 338, p. 706
  2. McMillan K (1996) "Considerations in the formulary selection of hydroxymethylglutaryl coenzyme a reductase inhibitors." Am J Health Syst Pharm, 53, p. 2206-14
  3. (2001) "Product Information. Lipitor (atorvastatin)." Parke-Davis
  4. Boberg M, Angerbauer R, Fey P, Kanhai WK, Karl W, Kern A, Ploschke J, Radtke M (1997) "Metabolism of cerivastatin by human liver microsomes in vitro. Characterization of primary metabolic pathways and of cytochrome P45 isozymes involved." Drug Metab Dispos, 25, p. 321-31
  5. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  6. Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
  7. Neuvonen PJ, Backman JT, Niemi M (2008) "Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin." Clin Pharmacokinet, 47, p. 463-74
View all 7 references

Switch to consumer interaction data

Moderate

amLODIPine food

Applies to: amlodipine / atorvastatin

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
View all 8 references

Switch to consumer interaction data

Moderate

levodopa food

Applies to: levodopa

ADJUST DOSING INTERVAL: The oral bioavailability and pharmacologic effects of levodopa and carbidopa may be decreased during concurrent administration with iron-containing products. The proposed mechanism is chelation of levodopa and carbidopa by the iron cation, forming an insoluble complex that is poorly absorbed from the gastrointestinal tract. In nine patients with Parkinson's disease, administration of levodopa-carbidopa 100 mg-25 mg with ferrous sulfate 325 mg decreased levodopa peak plasma concentration (Cmax) and systemic exposure (AUC) by 47% and 30%, respectively, and carbidopa Cmax and AUC by 77% and 82%, respectively, compared to administration with placebo. There was also evidence of reduced efficacy of levodopa in some patients. In another study consisting of eight healthy subjects, coadministration of levodopa 250 mg with ferrous sulfate 325 mg resulted in greater than 50% reductions in the Cmax and AUC of levodopa compared to administration of levodopa alone. The magnitude of the interaction was the greatest in patients whose plasma levels of levodopa were the highest following administration of levodopa alone.

MANAGEMENT: Until more information is available, patients receiving levodopa and/or carbidopa in combination with iron-containing products should be advised to separate the times of administration by as much as possible. Patients should be monitored for reduced efficacy of levodopa, and the dosage adjusted as necessary.

References

  1. Campbell NR, Hasinoff B (1989) "Ferrous sulfate reduces levodopa bioavailability: chelation as a possible mechanism." Clin Pharmacol Ther, 45, p. 220-5
  2. Campbell NR, Hasinoff BB (1991) "Iron supplements: a common cause of drug interactions." Br J Clin Pharmacol, 31, p. 251-5
  3. Campbell NR, Rankine D, Goodridge AE, Hasinoff BB, Kara M (1990) "Sinemet-ferrous sulphate interaction in patients with Parkinson's disease." Br J Clin Pharmacol, 30, p. 599-605
  4. Greene RJ, Hall AD, Hider RC (1990) "The interaction of orally administered iron with levodopa and methyldopa therapy." J Pharm Pharmacol, 42, p. 502-4
View all 4 references

Switch to consumer interaction data

Moderate

amLODIPine food

Applies to: amlodipine / atorvastatin

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
  2. Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
  3. Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
  6. Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
  7. Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
  10. Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
  12. McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
  13. Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
View all 14 references

Switch to consumer interaction data

Minor

amLODIPine food

Applies to: amlodipine / atorvastatin

The consumption of grapefruit juice may slightly increase plasma concentrations of amlodipine. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. Data have been conflicting and the clinical significance is unknown. Monitoring for calcium channel blocker adverse effects (e.g., headache, hypotension, syncope, tachycardia, edema) is recommended.

References

  1. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  2. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  3. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  4. Vincent J, Harris SI, Foulds G, Dogolo LC, Willavize S, Friedman HL (2000) "Lack of effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of amlodipine." Br J Clin Pharmacol, 50, p. 455-63
  5. Josefsson M, Ahlner J (2002) "Amlodipine and grapefruit juice." Br J Clin Pharmacol, 53, 405; discussion 406
  6. Kane GC, Lipsky JJ (2000) "Drug-grapefruit juice interactions." Mayo Clin Proc, 75, p. 933-42
View all 6 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.