Skip to main content

Drug Interactions between Aldoclor-150 and vamorolone

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

methyldopa vamorolone

Applies to: Aldoclor-150 (chlorothiazide / methyldopa) and vamorolone

MONITOR: Corticosteroids may antagonize the effects of antihypertensive medications by inducing sodium and fluid retention. These effects may be more common with the natural corticosteroids (cortisone, hydrocortisone) because they have greater mineralocorticoid activity. Conversely, some calcium channel blockers such as diltiazem and verapamil may increase corticosteroid plasma levels and effects by inhibiting their clearance via CYP450 3A4 metabolism.

MANAGEMENT: Patients on prolonged (i.e., longer than about a week) or high-dose corticosteroid therapy should have blood pressure, electrolyte levels, and body weight monitored regularly, and be observed for the development of edema and congestive heart failure. The dosages of antihypertensive medications may require adjustment.

References

  1. "Multum Information Services, Inc. Expert Review Panel"
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics."

Switch to consumer interaction data

Moderate

chlorothiazide vamorolone

Applies to: Aldoclor-150 (chlorothiazide / methyldopa) and vamorolone

MONITOR: The concomitant use of corticosteroids and agents that deplete potassium (e.g., potassium-wasting diuretics, amphotericin B, cation exchange resins) may result in increased risk of hypokalemia. Corticosteroids can produce hypokalemia and other electrolyte disturbances via mineralocorticoid effects, the degree of which varies with the agent (from most to least potent: fludrocortisone - cortisone/hydrocortisone - prednisolone/prednisone - other glucocorticoids) and route of administration (i.e. systemic vs. local). However, large systemic doses of any corticosteroid can demonstrate these effects, particularly if given for longer than brief periods. When used pharmacologically, adrenocorticotropic agents such as corticotropin have similar mineralocorticoid activities as cortisone and hydrocortisone.

MANAGEMENT: Patients receiving potassium-depleting agents with corticosteroids should be monitored closely for development of hypokalemia, particularly if fludrocortisone or large doses of another corticosteroid or adrenocorticotropic agent is given. Potassium supplementation may be necessary. Patients should be advised to notify their physician if they experience signs of electrolyte disturbances such as weakness, lethargy, and muscle pains or cramps.

References

  1. Thomas TP (1984) "The complications of systemic corticosteroid therapy in the elderly." Gerontology, 30, p. 60-5
  2. Seale JP, Compton MR (1986) "Side-effects of corticosteroid agents." Med J Aust, 144, p. 139-42
  3. Morris GC, Egan JG, Jones MK (1992) "Hypokalaemic paralysis induced by bolus prednisolone in Graves' disease." Aust N Z J Med, 22, p. 312
  4. Powell JR (1969) "Steroid and hypokalemic myopathy after corticosteroids for ulcerative colitis. Systemic and tropical application." Am J Gastroenterol, 52, p. 425-32
  5. Chrousos GA, Kattah JC, Beck RW, Cleary PA (1993) "Side effects of glucocorticoid treatment. Experience of the Optic Neuritis Treatment Trial." JAMA, 269, p. 2110-2
  6. Thorn GW (1966) "Clinical considerations in the use of corticosteroids." N Engl J Med, 274, p. 775-81
  7. (2001) "Product Information. Hydeltrasol (prednisolone)." Merck & Co., Inc
  8. Ramsahoye BH, Davies SV, el-Gaylani N, Sandeman D, Scanlon MF (1995) "The mineralocorticoid effects of high dose hydrocortisone." BMJ, 310, p. 656-7
View all 8 references

Switch to consumer interaction data

Drug and food interactions

Moderate

vamorolone food

Applies to: vamorolone

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of vamorolone. The proposed mechanism is inhibition of CYP450 3A4-mediated metabolism in the gut wall by certain compounds present in grapefruit. The metabolism of vamorolone is mediated by the isoenzymes CYP450 3A4/5, and CYP450 2C8, and uridine diphosphate glucuronosyltransferases (UGT) 1A3, 2B7, and 2B17. In general, the effect of grapefruit juice is concentration-, dose-, and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased systemic exposure to vamorolone may increase the risk of corticosteroid adverse effects such as hypercorticism, hyperglycemia, adrenal suppression, immunosuppression, hypertension, salt and water retention, electrolyte abnormalities, behavioral and mood disturbances, posterior subcapsular cataracts, glaucoma, bone loss, and growth retardation in children and adolescents.

MANAGEMENT: Until further information is available, it may be advisable for patients to avoid the consumption of large amounts of grapefruit and grapefruit juice during vamorolone therapy unless otherwise directed by their doctor, as the interaction is unreliable and subject to a high degree of interpatient variation. If coadministration is considered necessary, patients should be closely monitored for signs and symptoms of corticosteroid adverse effects. Patients should also be monitored for signs and symptoms of hypercorticism such as acne, striae, thinning of the skin, easy bruising, moon facies, dorsocervical "buffalo" hump, truncal obesity, increased appetite, acute weight gain, edema, hypertension, hirsutism, hyperhidrosis, proximal muscle wasting and weakness, glucose intolerance, exacerbation of preexisting diabetes, and depression. Signs and symptoms of adrenal insufficiency include anorexia, hypoglycemia, nausea, vomiting, weight loss, muscle wasting, fatigue, weakness, dizziness, postural hypotension, depression, and adrenal crisis manifested as an inability to respond to stress (e.g., illness, infection, surgery, trauma). Consultation with product labeling for specific recommendations is advisable.

References

  1. Zurcher RM, Frey BM, Frey FJ (1989) "Impact of ketoconazole on the metabolism of prednisolone." Clin Pharmacol Ther, 45, p. 366-72
  2. Yamashita SK, Ludwig EA, Middleton E Jr, Jusko WJ (1991) "Lack of pharmacokinetic and pharmacodynamic interactions between ketoconazole and prednisolone." Clin Pharmacol Ther, 49, p. 558-70
  3. Ulrich B, Frey FJ, Speck RF, Frey BM (1992) "Pharmacokinetics/pharmacodynamics of ketoconazole-prednisolone interaction." J Pharmacol Exp Ther, 260, p. 487-90
  4. Kandrotas RJ, Slaughter RL, Brass C, Jusko WJ (1987) "Ketoconazole effects on methylprednisolone disposition and their joint suppression of endogenous cortisol." Clin Pharmacol Ther, 42, p. 465-70
  5. Glynn AM, Slaughter RL, Brass C, et al. (1986) "Effects of ketoconazole on methylprednisolone pharmacokinetics and cortisol secretion." Clin Pharmacol Ther, 39, p. 654-9
  6. Itkin IH, Menzel ML (1970) "The use of macrolide antibiotic substances in the treatment of asthma." J Allergy Clin Immunol, 45, p. 146-62
  7. LaForce CF, Szefler SJ, Miller MF, Ebling W, Brenner M (1983) "Inhibition of methylprednisolone elimination in the presence of erythromycin therapy." J Allergy Clin Immunol, 72, p. 34-9
  8. Finkenbine RD, Frye MD (1998) "Case of psychosis due to prednisone-clarithromycin interaction." Gen Hosp Psychiat, 20, p. 325-6
  9. Varis T, Kaukonen KM, Kivisto KT, Neuvonen PJ (1998) "Plasma concentrations and effects of oral methylprednisolone are considerably increased by itraconazole." Clin Pharmacol Ther, 64, p. 363-8
  10. Hillebrand-Haverkort ME, Prummel MF, ten Veen JH (1999) "Ritonavir-induced Cushing's syndrome in a patient treated with nasal fluticasone." AIDS, 13, p. 1803
  11. Varis T, Kivisto KT, Neuvonen PJ (2000) "The effect of itraconazole on the pharmacokinetics and pharmacodynamics of oral prednisolone." Eur J Clin Pharmacol, 56, p. 57-60
  12. Varis T, Backman JT, Kivisto KT, Neuvonen PJ (2000) "Diltiazem and mibefradil increase the plasma concentrations and greatly enhance the adrenal-suppressant effect of oral methylprednisolone." Clin Pharmacol Ther, 67, p. 215-21
  13. Garey KW, Rubinstein I, Gotfried MH, Khan IJ, Varma S, Danziger LH (2000) "Long-term clarithromycin decreases prednisone requirements in elderly patients with prednisone-dependent asthma." Chest, 118, p. 1826-7
  14. Lebrun-Vignes B, Archer VC, Diquest B, et al. (2001) "Effect of itraconazole on the pharmacokinetics of prednisolone and methylprednisolone and cortisol secretion in healthy subjects." Br J Clin Pharmacol, 51, p. 443-50
  15. Couturier J, Steele M, Hussey L, Pawliuk G (2001) "Steroid-induced mania in an adolescent: risk factors and management." Can J Clin Pharmacol, 8, p. 109-12
  16. Gupta SK, Dube MP (2002) "Exogenous Cushing syndrome mimicking human immunodeficiency virus lipodystrophy." Clin Infect Dis, 35, E69-71
  17. Raaska K, Niemi M, Neuvonen M, Neuvonen PJ, Kivisto KT (2002) "Plasma concentrations of inhaled budesonide and its effects on plasma cortisol are increased by the cytochrome P4503A4 inhibitor itraconazole." Clin Pharmacol Ther, 72, p. 362-369
  18. Main KM, Skov M, Sillesen IB, et al. (2002) "Cushing's syndrome due to pharmacological interaction in a cystic fibrosis patient." Acta Paediatr, 91, p. 1008-11
  19. Skov M, Main KM, Sillesen IB, Muller J, Koch C, Lanng S (2002) "Iatrogenic adrenal insufficiency as a side-effect of combined treatment of itraconazole and budesonide." Eur Respir J, 20, p. 127-33
  20. Kotlyar M, Brewer ER, Golding M, Carson SW (2003) "Nefazodone inhibits methylprednisolone disposition and enhances its adrenal-suppressant effect." J Clin Psychopharmacol, 23, p. 652-6
  21. Bolland MJ, Bagg W, Thomas MG, Lucas JA, Ticehurst R, Black PN (2004) "Cushing's syndrome due to interaction between inhaled corticosteroids and itraconazole." Ann Pharmacother, 38, p. 46-9
  22. Edsbacker S, Andersson T (2004) "Pharmacokinetics of budesonide (Entocort EC) capsules for Crohn's disease." Clin Pharmacokinet, 43, p. 803-21
  23. Samaras K, Pett S, Gowers A, McMurchie M, Cooper DA (2005) "Iatrogenic Cushing's syndrome with osteoporosis and secondary adrenal failure in HIV-infected patients receiving inhaled corticosteroids and ritonavir-boosted protease inhibitors: six cases." J Clin Endocrinol Metab, 90, p. 4394-8
  24. Soldatos G, Sztal-Mazer S, Woolley I, Stockigt J (2005) "Exogenous glucocorticoid excess as a result of ritonavir-fluticasone interaction." Intern Med J, 35, p. 67-8
  25. Penzak SR, Formentini E, Alfaro RM, Long M, Natarajan V, Kovacs J (2005) "Prednisolone pharmacokinetics in the presence and absence of ritonavir after oral prednisone administration to healthy volunteers." J Acquir Immune Defic Syndr, 40, p. 573-80
  26. EMEA. European Medicines Agency (2007) EPARs. European Union Public Assessment Reports. http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines_landingpage.jsp&mid
  27. Bhumbra NA, Sahloff EG, Oehrtman SJ, Horner JM (2007) "Exogenous Cushing syndrome with inhaled fluticasone in a child receiving lopinavir/ritonavir." Ann Pharmacother, 41, p. 1306-9
  28. Busse KH, Formentini E, Alfaro RM, Kovacs JA, Penzak SR (2008) "Influence of antiretroviral drugs on the pharmacokinetics of prednisolone in HIV-infected individuals." J Acquir Immune Defic Syndr, 48, p. 561-6
  29. Agencia EspaƱola de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de informaciĆ³n online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html
  30. (2023) "Product Information. Agamree (vamorolone)." Santhera Pharmaceuticals (US)
View all 30 references

Switch to consumer interaction data

Moderate

methyldopa food

Applies to: Aldoclor-150 (chlorothiazide / methyldopa)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
View all 8 references

Switch to consumer interaction data

Moderate

chlorothiazide food

Applies to: Aldoclor-150 (chlorothiazide / methyldopa)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
View all 8 references

Switch to consumer interaction data

Moderate

methyldopa food

Applies to: Aldoclor-150 (chlorothiazide / methyldopa)

ADJUST DOSING INTERVAL: The oral bioavailability and pharmacologic effects of methyldopa may be decreased during concurrent administration with iron-containing products. The proposed mechanism is chelation of methyldopa by the iron cation, forming an insoluble complex that is poorly absorbed from the gastrointestinal tract. In one study, five hypertensive patients receiving chronic methyldopa therapy (250 mg to 1500 mg daily) all had elevated blood pressure following the addition of ferrous sulfate 325 mg three times daily for 2 weeks. The systolic pressure had increased by more than 15 mmHg in three of the patients and the diastolic pressure increased by more than 10 mmHg in two. Blood pressure returned to baseline within 7 days of discontinuing the iron. In 12 normal subjects, administration of methyldopa 500 mg with ferrous sulfate 325 mg or ferrous gluconate 600 mg resulted in an 88% and 79% reduction, respectively, in the renal excretion of unmetabolized, free methyldopa compared to administration of methyldopa alone. In another study, administration of ferrous sulfate simultaneously with methyldopa reduced the bioavailability of methyldopa by 83%, while administration one hour or two hours before methyldopa reduced its bioavailability by 55% and 42%, respectively.

MANAGEMENT: Until more information is available, patients receiving methyldopa in combination with iron-containing products should be advised to separate the times of administration by as much as possible. Patients should be monitored closely for altered hypertensive effect and methyldopa dosage increased as necessary. Selection of an alternative antihypertensive therapy may be necessary.

References

  1. Campbell N, Paddock V, Sundaram R (1988) "Alteration of methyldopa absorption, metabolism, and blood pressure control caused by ferrous sulfate and ferrous gluconate." Clin Pharmacol Ther, 43, p. 381-6
  2. Campbell NR, Campbell RR, Hasinoff BB (1990) "Ferrous sulfate reduces methyldopa absorption: methyldopa: iron complex formation as a likely mechanism." Clin Invest Med, 6, p. 329-32
  3. Campbell NR, Hasinoff BB (1991) "Iron supplements: a common cause of drug interactions." Br J Clin Pharmacol, 31, p. 251-5

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.