Skip to main content

Drug Interactions between acetaminophen / hydrocodone and Oriahnn

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

HYDROcodone elagolix

Applies to: acetaminophen / hydrocodone and Oriahnn (elagolix / estradiol / norethindrone)

MONITOR CLOSELY: Coadministration with inducers of CYP450 3A4 may decrease the plasma concentrations of opioids that are primarily metabolised by the isoenzyme such as butorphanol, fentanyl, hydrocodone, and oxycodone. Reduced efficacy or withdrawal symptoms may occur in patients maintained on their narcotic pain regimen following the addition of a CYP450 3A4 inducer. Conversely, discontinuation of the inducer may increase opioid plasma concentrations and potentiate the risk of overdose and fatal respiratory depression. In addition, when two or more medications with similar adverse effect profiles are given concurrently, the likelihood of experiencing these adverse reactions may be increased. For example, coadministration with other agents that can prolong the QT interval (e.g., apalutamide, encorafenib, enzalutamide) may result in additive effects and an increased risk of ventricular arrhythmias like torsade de pointes.

MANAGEMENT: Pharmacologic response to the opioid should be monitored more closely whenever a CYP450 3A4 inducer is added to or withdrawn from therapy, and the opioid dosage adjusted as necessary. If the CYP450 3A4 inducer also carries a risk of prolonging the QT interval, then obtaining more frequent electrocardiograms (ECGs) to monitor the QT interval may be advisable. Patients should be counseled to seek immediate medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, syncope, palpitations, irregular heartbeat, and/or shortness of breath.

References

  1. (2001) "Product Information. Mycobutin (rifabutin)." Pharmacia and Upjohn
  2. (2001) "Product Information. Rifadin (rifampin)." Hoechst Marion Roussel
  3. "Product Information. Duragesic Transdermal System (fentanyl)." Janssen Pharmaceutica, Titusville, NJ.
  4. (2001) "Product Information. OxyContin (oxycodone)." Purdue Frederick Company
  5. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  6. (2006) "Product Information. Ionsys (fentanyl)." Ortho McNeil Pharmaceutical
  7. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  8. Cerner Multum, Inc. "Australian Product Information."
  9. (2013) "Product Information. Zohydro ER (hydrocodone)." Zogenix, Inc
  10. (2017) "Product Information. Butorphanol Tartrate (butorphanol)." Apotex Corporation
View all 10 references

Switch to consumer interaction data

Moderate

estradiol elagolix

Applies to: Oriahnn (elagolix / estradiol / norethindrone) and Oriahnn (elagolix / estradiol / norethindrone)

GENERALLY AVOID: Since endometriosis is fueled by estrogen, coadministration with estrogen-containing medications including combination oral contraceptive pills is expected to reduce the efficacy of elagolix. The effect of progestin-only contraceptives is unknown. Elagolix is a gonadotropin-releasing hormone (GnRH) receptor antagonist that inhibits endogenous GnRH signaling by binding competitively to GnRH receptors in the pituitary gland. Administration of elagolix results in dose-dependent suppression of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), leading to decreased levels of the ovarian sex hormones, estradiol and progesterone.

MANAGEMENT: Women requiring contraception should be advised to use non-hormonal forms of contraception during treatment with elagolix and for one week after its discontinuation.

References

  1. (2018) "Product Information. Orilissa (elagolix)." AbbVie US LLC

Switch to consumer interaction data

Moderate

norethindrone elagolix

Applies to: Oriahnn (elagolix / estradiol / norethindrone) and Oriahnn (elagolix / estradiol / norethindrone)

ADDITIONAL CONTRACEPTION RECOMMENDED: Coadministration with inducers of CYP450 3A4 may decrease the plasma concentrations of estrogens and progestins. Estrogens have been shown in in vitro and in vivo studies to be partially metabolized by CYP450 3A4, and other steroids including progestins are also believed to undergo metabolism by this isoenzyme. The interaction has been reported primarily with oral contraceptives. There have been case reports of menstrual breakthrough bleeding or unwanted pregnancy in women receiving low-dose oral contraceptives following the addition of known CYP450 3A4 inducers such as carbamazepine, phenobarbital, phenytoin, rifampin, and St. John's wort. Inadequate response to estrogen replacement therapy has also been reported in a patient treated with phenytoin. Aminoglutethimide, a CYP450 3A4 inducer, has been shown to decrease medroxyprogesterone and megestrol serum levels by 74% in six patients stabilized on their progestin regimen.

MANAGEMENT: Pharmacologic response to estrogens and progestins should be monitored more closely whenever a CYP450 3A4 inducer is added to or withdrawn from therapy, and the hormone dosage adjusted as necessary. For patients receiving hormonal contraceptives, additional or alternative non-hormonal birth control may be advisable during concomitant therapy with CYP450 3A4 inducers. Additional or alternative non-hormonal birth control may be recommended beyond discontinuation of the CYP450 3A4 inducer(s). Individual product labeling should be consulted for specific time frames. Intrauterine systems are unlikely to be significantly affected because of their local action. Input from a gynecologist or similar expert on adequate contraception, including emergency contraception, should be sought as needed. Patients should be advised to notify their physician if they experience inadequate control of symptoms associated with estrogen deficiency (e.g., nocturnal sweating, vasomotor disturbances, atrophic vaginitis) or changes in the uterine bleeding profile.

References

  1. Crawford P, Chadwick DJ, Martin C, et al. (1990) "The interaction of phenytoin and carbamazepine with combined oral contraceptive steroids." Br J Clin Pharmacol, 30, p. 892-6
  2. Venkatesan K (1992) "Pharmacokinetic drug interactions with rifampicin." Clin Pharmacokinet, 22, p. 47-65
  3. Borcherding SM, Baciewicz AM, Self TH (1992) "Update on rifampin drug interactions." Arch Intern Med, 152, p. 711-6
  4. Weber JC (1984) "Interaction between oral contraceptives and griseofulvin." Br Med J, 288, p. 1125-6
  5. McDaniel PA, Caldroney RD (1986) "Oral contraceptives and griseofulvin interaction." Drug Intell Clin Pharm, 20, p. 384
  6. Cote J (1990) "Interaction of griseofulvin and oral contraceptives." J Am Acad Dermatol, 22, p. 124-5
  7. Baciewicz AM (1985) "Oral contraceptive drug interactions." Ther Drug Monit, 7, p. 26-35
  8. Skolnick JL, Stoler BS, Katz DB, Anderson WH (1976) "Rifampin, oral contraceptives, and pregnancy." JAMA, 236, p. 1382
  9. Lundgren S, Lonning PE, Aakvaag A, Kvinnsland S, Lnning PE (1990) "Influence of aminoglutethimide on the metabolism of medroxyprogesterone acetate and megestrol acetate in postmenopausal patients with advanced breast cancer." Cancer Chemother Pharmacol, 27, p. 101-5
  10. Halpenny O, Bye A, Cranny A, Feely J, Daly PA (1990) "Influence of aminoglutethimide on plasma levels of medroxyprogesterone acetate." Med Oncol Tumor Pharmacother, 7, p. 241-7
  11. Mumford JP (1974) "Letter: Drugs affecting oral contraceptives." Br Med J, 2, p. 333-4
  12. Back DJ, Bates M, Bowden A, et al. (1980) "The interaction of phenobarbital and other anticonvulsants with oral contraceptive steroid therapy." Contraception, 22, p. 495-503
  13. Dossetor J (1975) "Drug interactions with oral contraceptives." Br Med J, 4, p. 467-8
  14. Baciewicz AM, Self TH (1984) "Rifampin drug interactions." Arch Intern Med, 144, p. 1667-71
  15. Nocke-finck L (1973) "Effects of rifampicin on menstral cycle and on estrogen excretion in patients taking oral contraceptives." JAMA, 226, p. 378
  16. Bolt HM, Bolt M, Kappus H (1977) "Interaction of rifampicin treatment with pharmacokinetics and metabolism of ethinyloestradiol in man." Acta Endocrinol (Copenh), 85, p. 189-97
  17. Back DJ, Breckenridge AM, Crawford FE, et al. (1980) "The effect of rifampicin on the pharmacokinetics of ethynylestradiol in women." Contraception, 21, p. 135-43
  18. Furlan AJ, Rothner AD (1974) "Anti-epileptic drugs and failure of oral contraceptives." Lancet, 1, p. 1113
  19. Coulam CB, Annegers JF (1979) "Do anticonvulsants reduce the efficacy of oral contraceptives?" Epilepsia, 20, p. 519-26
  20. Szoka PR, Edgren RA (1988) "Drug interactions with oral contraceptives: compilation and analysis of an adverse experience report database." Fertil Steril, 49, s31-8
  21. Mattson RH, Cramer JA, Darney PD, Naftolin F (1986) "Use of oral contraceptives by women with epilepsy." JAMA, 256, p. 238-40
  22. van Dijke CP, Weber JC (1984) "Interaction between oral contraceptives and griseofulvin." Br Med J (Clin Res Ed), 288, p. 1125-6
  23. Laengner H, Detering K (1974) "Letter: Anti-epileptic drugs and failure of oral contraceptives." Lancet, 2, p. 600
  24. Janz D, Schmidt D (1974) "Letter: Anti-epileptic drugs and failure of oral contraceptives." Lancet, 1, p. 1113
  25. Curran MA (1986) "Drug interactions with the pill." Med J Aust, 144, p. 670-1
  26. Back DJ, Orme ML (1990) "Pharmacokinetic drug interactions with oral contraceptives." Clin Pharmacokinet, 18, p. 472-84
  27. D'Arcy PF (1986) "Drug interactions with oral contraceptives." Drug Intell Clin Pharm, 20, p. 353-62
  28. Notelovitz M, Tjapkes J, Ware M (1981) "Interaction between estrogen and dilantin in a menopausal woman." N Engl J Med, 304, p. 788-9
  29. (2001) "Product Information. Premarin (conjugated estrogens)." Wyeth-Ayerst Laboratories
  30. Strayhorn VA, Baciewicz AM, Self TH (1997) "Update on rifampin drug interactions, III." Arch Intern Med, 157, p. 2453-8
  31. Michalets EL (1998) "Update: clinically significant cytochrome P-450 drug interactions." Pharmacotherapy, 18, p. 84-112
  32. Back DJ, Breckenridge AM, Crawford FE, MacIver M, Orne ML, Rowe PH (1981) "Interindividual variation and drug interactions with hormonal steroid contraceptives." Drugs, 21, p. 46-61
  33. LeBel M, Masson E, Guilbert E, Colborn D, Paquet F, Allard S, Vallee F, Narang PK (1998) "Effects of rifabutin and rifampicin on the pharmacokinetics of ethinylestradiol and norethindrone." J Clin Pharmacol, 38, p. 1042-50
  34. Barditch-Crovo P, Trapnell CB, Ette E, et al. (1999) "The effects of rifampin and rifabutin on the pharmacokinetics and pharmacodynamics of a combination oral contraceptive." Clin Pharmacol Ther, 65, p. 428-38
  35. Weisberg E (1999) "Interactions between oral contraceptives and antifungals antibacterials - Is contraceptive failure the result?." Clin Pharmacokinet, 36, p. 309-13
  36. Klosterskov Jensen P, Saano V, Haring P, Svenstrup B, Menge GP (1992) "Possible interaction between oxcarbazepine and an oral contraceptive." Epilepsia, 33, p. 1149-52
  37. Wilbur K, Ensom MHH (2000) "Pharmacokinetic drug interactions between oral contraceptives and second-generation anticonvulsants." Clin Pharmacokinet, 38, p. 355-65
  38. Durr D, Stieger B, KullakUblick GA, Rentsch KM, Steinert HC, Meier PJ, Fattinger K (2000) "St John's Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4." Clin Pharmacol Ther, 68, p. 598-604
  39. Weaver K, Glasier A (1999) "Interaction between broad-spectrum antibiotics and the combined oral contraceptive pill: a literature review." Contraception, 59, p. 71-8
  40. Zachariassen RD (1994) "Loss of oral contraceptive efficacy by concurrent antibiotic administration." Women Health, 22, p. 17-26
  41. Dickinson BD, Altman RD, Nielsen NH, Sterling ML (2001) "Drug interactions between oral contraceptives and antibiotics." Obstet Gynecol, 98(5 Pt 1), p. 853-60
  42. (2003) "Unwanted pregnancy on self-medication with St John's wort despite hormonal contraception." Br J Clin Pharmacol, 55, p. 112-113
  43. Pfrunder A, Schiesser M, Gerber S, Haschke M, Bitzer J, Drewe J (2003) "Interaction of St John's wort with low-dose oral contraceptive therapy: a randomized controlled trial." Br J Clin Pharmacol, 56, p. 683-90
  44. Hall SD, Wang Z, Huang SM, et al. (2003) "The interaction between St John's wort and an oral contraceptive." Clin Pharmacol Ther, 74, p. 525-35
  45. Gorski JC, Hamman MA, Wang Z, Vasvada N, Huang S, Hall SD (2002) "The effect of St. John's wort on the efficacy of oral contraception." Clin Pharmacol Ther, 71, P25
  46. Schwarz UI, Buschel B, Kirch W (2001) "Failure of oral contraceptives because of St. John's wort." Eur J Clin Pharmacol, 57, A25
  47. Faculty of Sexual & Reproductive Healthcare (2016) "FSRH Clinical Guidance: Drug Interactions with Hormonal Contraception. file:///C:/Users/df033684/Downloads/ceuguidancedruginteractionshormonal.pdf"
View all 47 references

Switch to consumer interaction data

Drug and food interactions

Major

HYDROcodone food

Applies to: acetaminophen / hydrocodone

GENERALLY AVOID: Alcohol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics including hydrocodone. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.

GENERALLY AVOID: Consumption of alcohol while taking some sustained-release formulations of hydrocodone may cause rapid release of the drug, resulting in high systemic levels of hydrocodone that may be potentially lethal. Alcohol apparently can disrupt the release mechanism of some sustained-release formulations. In study subjects, the rate of absorption of hydrocodone from an extended-release formulation was found to be affected by coadministration with 40% alcohol in the fasted state, as demonstrated by an average 2.4-fold (up to 3.9-fold in one subject) increase in hydrocodone peak plasma concentration and a decrease in the time to peak concentration. Alcohol also increased the extent of absorption by an average of 1.2-fold (up to 1.7-fold in one subject).

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of hydrocodone. The proposed mechanism is inhibition of CYP450 3A4-mediated metabolism of hydrocodone by certain compounds present in grapefruit. Increased hydrocodone concentrations could conceivably increase or prolong adverse drug effects and may cause potentially fatal respiratory depression.

MANAGEMENT: Patients taking sustained-release formulations of hydrocodone should not consume alcohol or use medications that contain alcohol. In general, potent narcotics such as hydrocodone should not be combined with alcohol. Patients should also avoid consumption of grapefruit or grapefruit juice during treatment with hydrocodone.

References

  1. (2013) "Product Information. Zohydro ER (hydrocodone)." Zogenix, Inc

Switch to consumer interaction data

Major

acetaminophen food

Applies to: acetaminophen / hydrocodone

GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.

MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).

References

  1. Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA (1985) "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med, 145, p. 2019-23
  2. O'Dell JR, Zetterman RK, Burnett DA (1986) "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA, 255, p. 2636-7
  3. Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB (1986) "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med, 104, p. 399-404
  4. Thummel KE, Slattery JT, Nelson SD (1988) "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther, 245, p. 129-36
  5. McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL (1980) "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA, 244, p. 251-3
  6. Kartsonis A, Reddy KR, Schiff ER (1986) "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med, 105, p. 138-9
  7. Prescott LF, Critchley JA (1983) "Drug interactions affecting analgesic toxicity." Am J Med, 75, p. 113-6
  8. (2002) "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical
  9. Whitcomb DC, Block GD (1994) "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA, 272, p. 1845-50
  10. Bonkovsky HL (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
  11. Nelson EB, Temple AR (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
  12. Zimmerman HJ, Maddrey WC (1995) "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology, 22, p. 767-73
View all 12 references

Switch to consumer interaction data

Moderate

norethindrone food

Applies to: Oriahnn (elagolix / estradiol / norethindrone)

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. (1992) "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol, 42, p. 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD (1993) "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther, 53, p. 637-42
  4. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A (1994) "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie, 49, p. 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD (1993) "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther, 54, p. 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84
  8. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
  11. Majeed A, Kareem A (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol, 10, p. 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
  13. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 63, p. 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A (1998) "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet, 23, p. 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther, 64, p. 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK (1998) "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther, 64, p. 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther, 64, p. 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. (1998) "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther, 36, p. 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
  22. Eagling VA, Profit L, Back DJ (1999) "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol, 48, p. 543-52
  23. Damkier P, Hansen LL, Brosen K (1999) "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol, 48, p. 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC (1999) "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther, 21, p. 1890-9
  25. Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
  26. Gunston GD, Mehta U (2000) "Potentially serious drug interactions with grapefruit juice." S Afr Med J, 90, p. 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. (2000) "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol, 49, p. 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. (2000) "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol, 49, p. 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E (2001) "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit, 23, p. 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
  32. Flanagan D (2005) "Understanding the grapefruit-drug interaction." Gen Dent, 53, 282-5; quiz 286
View all 32 references

Switch to consumer interaction data

Minor

estradiol food

Applies to: Oriahnn (elagolix / estradiol / norethindrone)

Coadministration with grapefruit juice may increase the bioavailability of oral estrogens. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits. In a small, randomized, crossover study, the administration of ethinyl estradiol with grapefruit juice (compared to herbal tea) increased peak plasma drug concentration (Cmax) by 37% and area under the concentration-time curve (AUC) by 28%. Based on these findings, grapefruit juice is unlikely to affect the overall safety profile of ethinyl estradiol. However, as with other drug interactions involving grapefruit juice, the pharmacokinetic alterations are subject to a high degree of interpatient variability. Also, the effect on other estrogens has not been studied.

References

  1. Weber A, Jager R, Borner A, et al. (1996) "Can grapefruit juice influence ethinyl estradiol bioavailability?" Contraception, 53, p. 41-7
  2. Schubert W, Eriksson U, Edgar B, Cullberg G, Hedner T (1995) "Flavonoids in grapefruit juice inhibit the in vitro hepatic metabolism of 17B-estradiol." Eur J Drug Metab Pharmacokinet, 20, p. 219-24

Switch to consumer interaction data

Minor

norethindrone food

Applies to: Oriahnn (elagolix / estradiol / norethindrone)

The central nervous system effects and blood levels of ethanol may be increased in patients taking oral contraceptives, although data are lacking and reports are contradictory. The mechanism may be due to enzyme inhibition. Consider counseling women about this interaction which is unpredictable.

References

  1. Hobbes J, Boutagy J, Shenfield GM (1985) "Interactions between ethanol and oral contraceptive steroids." Clin Pharmacol Ther, 38, p. 371-80

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.