Skip to main content

Drug Interactions between AccessPak for HIV PEP Expanded with Kaletra and halofantrine

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

ritonavir halofantrine

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir) and halofantrine

MONITOR CLOSELY: Coadministration with inhibitors of CYP450 3A4 may increase the plasma concentrations of halofantrine, resulting in an increased risk of QT interval prolongation and ventricular arrhythmias. The mechanism is inhibition of CYP450 3A4, the isoenzyme responsible for the metabolic clearance of halofantrine. Halofantrine has been associated with QT interval prolongation, ventricular arrhythmias, and sudden death, even at recommended dosages.

MANAGEMENT: Caution and close monitoring is recommended if halofantrine is prescribed with CYP450 3A4 inhibitors, particularly potent ones like itraconazole, ketoconazole, posaconazole, voriconazole, clarithromycin, telithromycin, conivaptan, idelalisib, nefazodone, cobicistat, delavirdine, and most protease inhibitors. The manufacturer recommends performing an ECG before initiating halofantrine therapy and cardiac monitoring during and for 8 to 12 hours after completion of therapy.

References

  1. Giao PT, de Vries PJ "Pharmacokinetic interactions of antimalarial agents." Clin Pharmacokinet 40 (2001): 343-73
  2. "Product Information. Halfan (halofantrine)." GlaxoSmithKline (2003):
  3. Charbit B, Becquemont L, Lepere B, Peytavin G, Funck-Bretano C "Pharmacokinetic and pharmacodynamic interaction between grapefruit juice and halofantrine." Clin Pharmacol Ther 72 (2002): 514-23
  4. Abernethy DR, Wesche DL, Barbey JT, et al. "Stereoselective halofantrine disposition and effect: concentration-related QTc prolongation." Br J Clin Pharmacol 51 (2001): 231-7
  5. Baune B, Flinois JP, Furlan V, et al. "Halofantrine metabolism in microsomes in man: major role of CYP 3A4 and CYP 3A5." J Pharm Pharmacol 51 (1999): 419-26
View all 5 references

Switch to consumer interaction data

Major

lopinavir halofantrine

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir) and halofantrine

CONTRAINDICATED: Halofantrine can cause dose-related prolongation of the QT interval at recommended therapeutic doses. QTc interval prolongation and death have been reported during combination use of halofantrine and mefloquine. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death.

MANAGEMENT: Coadministration of halofantrine with other drugs that can prolong the QT interval is considered contraindicated. The manufacturer recommends performing an ECG before initiating halofantrine therapy and monitoring cardiac rhythm during and for 8 to 12 hours after completion of therapy.

References

  1. "Product Information. Mefloquine Hydrochloride (mefloquine)." Hikma USA (formerly West-Ward Pharmaceutical Corporation) (2021):
  2. Giao PT, de Vries PJ "Pharmacokinetic interactions of antimalarial agents." Clin Pharmacokinet 40 (2001): 343-73
  3. "Product Information. Halfan (halofantrine)." GlaxoSmithKline (2003):
  4. Nosten F, ter Kuile FO, Luxemburger C, et al. "Cardiac effects of antimalarial treatment with halofantrine." Lancet 341 (1993): 1054-6
  5. "Sudden death in a traveler following halofantrine administration--Togo, 2000." MMWR Morb Mortal Wkly Rep 50 (2001): 169-70, 179
  6. Abernethy DR, Wesche DL, Barbey JT, et al. "Stereoselective halofantrine disposition and effect: concentration-related QTc prolongation." Br J Clin Pharmacol 51 (2001): 231-7
  7. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  8. Canadian Pharmacists Association "e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink" (2006):
  9. Cerner Multum, Inc. "Australian Product Information." O 0
View all 9 references

Switch to consumer interaction data

Moderate

ritonavir tenofovir

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. "Product Information. Viread (tenofovir)." Gilead Sciences (2001):
  2. Verhelst D, Monge M, Meynard JL, et al. "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis 40 (2002): 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS 17 (2003): 935-7
  4. Karras A, Lafaurie M, Furco A, et al. "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis 36 (2003): 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. "Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp" (2003):
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis 37 (2003): E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis 42 (2006): 283-90
  8. Kapadia J, Shah S, Desai C, et al. "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol 45 (2013): 191-2
View all 8 references

Switch to consumer interaction data

Moderate

lopinavir tenofovir

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. "Product Information. Viread (tenofovir)." Gilead Sciences (2001):
  2. Verhelst D, Monge M, Meynard JL, et al. "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis 40 (2002): 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS 17 (2003): 935-7
  4. Karras A, Lafaurie M, Furco A, et al. "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis 36 (2003): 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. "Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp" (2003):
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis 37 (2003): E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis 42 (2006): 283-90
  8. Kapadia J, Shah S, Desai C, et al. "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol 45 (2013): 191-2
View all 8 references

Switch to consumer interaction data

Drug and food interactions

Major

halofantrine food

Applies to: halofantrine

GENERALLY AVOID: Grapefruit juice may increase the plasma concentration of halofantrine. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. After administration of 500 mg with 250 mL regular-strength grapefruit juice daily for 3 days, average halofantrine AUC increased 2.8-fold and peak plasma concentrations increased 3.2-fold, compared to water, in healthy subjects (n=12). QT interval prolongation increased from an average of 17 ms with water to 31 ms with grapefruit juice. Halofantrine, even at recommended doses, can cause dose-related prolongation of the QT interval, resulting in an elevated risk of potentially fatal ventricular arrhythmias including ventricular tachycardia and torsade de pointes.

ADJUST DOSING INTERVAL: The presence of food may increase the absorption and toxicity of halofantrine. Peak plasma concentrations increased seven-fold and AUC increased three-fold in healthy subjects when halofantrine was administered with high-fat food.

MANAGEMENT: The authors of the study recommend that grapefruit juice be avoided during halofantrine therapy. The manufacturer recommends performing an ECG before initiating halofantrine therapy and cardiac monitoring during and for 8 to 12 hours after completion of therapy. Halofantrine should be taken on an empty stomach at least 1 hour before or 2 hours after food.

References

  1. Giao PT, de Vries PJ "Pharmacokinetic interactions of antimalarial agents." Clin Pharmacokinet 40 (2001): 343-73
  2. "Product Information. Halfan (halofantrine)." GlaxoSmithKline (2003):
  3. Charbit B, Becquemont L, Lepere B, Peytavin G, Funck-Bretano C "Pharmacokinetic and pharmacodynamic interaction between grapefruit juice and halofantrine." Clin Pharmacol Ther 72 (2002): 514-23
  4. Abernethy DR, Wesche DL, Barbey JT, et al. "Stereoselective halofantrine disposition and effect: concentration-related QTc prolongation." Br J Clin Pharmacol 51 (2001): 231-7
View all 4 references

Switch to consumer interaction data

Moderate

ritonavir food

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

ADJUST DOSING INTERVAL: Administration with food may modestly affect the bioavailability of ritonavir from the various available formulations. When the oral solution was given under nonfasting conditions, peak ritonavir concentrations decreased 23% and the extent of absorption decreased 7% relative to fasting conditions. Dilution of the oral solution (within one hour of dosing) with 240 mL of chocolate milk or a nutritional supplement (Advera or Ensure) did not significantly affect the extent and rate of ritonavir absorption. When a single 100 mg dose of the tablet was administered with a high-fat meal (907 kcal; 52% fat, 15% protein, 33% carbohydrates), approximately 20% decreases in mean peak concentration (Cmax) and systemic exposure (AUC) were observed relative to administration after fasting. Similar decreases in Cmax and AUC were reported when the tablet was administered with a moderate-fat meal. In contrast, the extent of absorption of ritonavir from the soft gelatin capsule formulation was 13% higher when administered with a meal (615 KCal; 14.5% fat, 9% protein, and 76% carbohydrate) relative to fasting.

MANAGEMENT: Ritonavir should be taken with meals to enhance gastrointestinal tolerability.

References

  1. "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical PROD (2001):

Switch to consumer interaction data

Moderate

lopinavir food

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

ADJUST DOSING INTERVAL: Food significantly increases the bioavailability of lopinavir from the oral solution formulation of lopinavir-ritonavir. Relative to fasting, administration of lopinavir-ritonavir oral solution with a moderate-fat meal (500 to 682 Kcal; 23% to 25% calories from fat) increased lopinavir peak plasma concentration (Cmax) and systemic exposure (AUC) by 54% and 80%, respectively, whereas administration with a high-fat meal (872 Kcal; 56% from fat) increased lopinavir Cmax and AUC by 56% and 130%, respectively. No clinically significant changes in Cmax and AUC were observed following administration of lopinavir-ritonavir tablets under fed conditions versus fasted conditions. Relative to fasting, administration of a single 400 mg-100 mg dose (two 200 mg-50 mg tablets) with a moderate-fat meal (558 Kcal; 24.1% calories from fat) increased lopinavir Cmax and AUC by 17.6% and 26.9%, respectively, while administration with a high-fat meal (998 Kcal; 51.3% from fat) increased lopinavir AUC by 18.9% but not Cmax. Relative to fasting, ritonavir Cmax and AUC also increased by 4.9% and 14.9%, respectively, with the moderate-fat meal and 10.3% and 23.9%, respectively, with the high-fat meal.

MANAGEMENT: Lopinavir-ritonavir oral solution should be taken with meals to enhance bioavailability and minimize pharmacokinetic variability. Lopinavir-ritonavir tablets may be taken without regard to meals.

References

  1. "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical PROD (2001):

Switch to consumer interaction data

Minor

tenofovir food

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

Food enhances the oral absorption and bioavailability of tenofovir, the active entity of tenofovir disoproxil fumarate. According to the product labeling, administration of the drug following a high-fat meal increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of tenofovir by approximately 14% and 40%, respectively, compared to administration in the fasting state. However, administration with a light meal did not significantly affect the pharmacokinetics of tenofovir compared to administration in the fasting state. Food delays the time to reach tenofovir Cmax by approximately 1 hour. Tenofovir disoproxil fumarate may be administered without regard to meals.

References

  1. "Product Information. Viread (tenofovir)." Gilead Sciences (2001):

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.