Sodium Ferric Gluconate

Class: Iron Preparations
Molecular Formula: C12H22FeO14
CAS Number: 299-29-6
Brands: Ferrlecit

Introduction

Hematinic agent;1 8 28 stable macromolecular complex composed of ferric oxide hydrate directly bonded to sucrose and chelated with gluconate.1 2 3

Uses for Sodium Ferric Gluconate

Iron Deficiency Anemia in Hemodialysis Patients Receiving Epoetin Alfa Therapy

Treatment of iron deficiency anemia in adult and pediatric hemodialysis patients receiving epoetin alfa therapy.1 15

In patients with chronic kidney disease (CKD) on hemodialysis, IV iron superior to orally administered iron in increasing hemoglobin concentrations and/or minimizing dosage of an erythropoiesis-stimulating agent (ESA) (e.g., epoetin alfa); the National Kidney Foundation Kidney Disease Outcomes Quality Initiative (NKF-KDOQI) guidelines state that the IV route of iron administration is preferred in such patients.5

Slideshow: 18 Herbal Supplements with Risky Drug Interactions

Herbal and Dietary Supplements Deserve Your Attention

Limited data suggest that iron sucrose and sodium ferric gluconate injections may be associated less frequently with serious adverse effects (e.g., hypersensitivity reactions) compared with iron dextran injection.2 3 100 101

Safety and efficacy not established for the prevention and/or treatment of iron deficiency anemia not associated with CKD (e.g., HIV- or cancer-related anemia).44 97

Sodium Ferric Gluconate Dosage and Administration

Administration

IV Administration

For solution and drug compatibility information, see Compatibility under Stability.

Administer (diluted) by slow IV infusion or (undiluted) by slow IV injection.1 2 19

Dilution

For IV infusion, dilute recommended adult or pediatric dosage in 100 or 25 mL of 0.9% sodium chloride, respectively.1

Use immediately after dilution.1

Rate of Administration

IV infusion: slowly (e.g., over 1 hour).1 3

IV injection (adults): slowly, up to 12.5 mg/minute1 2 at the end of dialysis.6 7 16 21

Dosage

Dosage is expressed in terms of mg of elemental iron.1 Sodium ferric gluconate injection contains the equivalent of 12.5 mg of elemental iron per mL.1

Pediatric Patients

Iron Deficiency Anemia in Hemodialysis Patients Receiving Epoetin Alfa Therapy
IV

1.5 mg/kg (up to 125 mg/dose) administered at or during hemodialysis for 8 sequential dialysis sessions.a

Adults

Iron Deficiency Anemia in Hemodialysis Patients Receiving Epoetin Alfa Therapy
IV

125 mg administered at sequential dialysis sessions or during the dialysis session itself.1 3 Most patients will require a minimum cumulative dose of 1 g of elemental iron, administered over 8 sessions at or during sequential dialysis treatments, to achieve a favorable hemoglobin or hematocrit response.1 3

Monitor iron indices (i.e., transferrin saturation [TSAT], serum ferritin concentrations) periodically, and use results (in conjunction with hemoglobin concentrations and ESA dosage) to guide iron therapy.5 Once patients achieve TSAT levels ≥20% or serum ferritin concentrations ≥100 ng/mL, continue IV iron therapy at the lowest dose necessary to maintain target hematocrit/hemoglobin levels and iron stores within acceptable limits.1

Prescribing Limits

Pediatric Patients

Iron Deficiency Anemia in Hemodialysis Patients Receiving Epoetin Alfa Therapy
IV

Maximum dose: 125 mg per session.a

Cautions for Sodium Ferric Gluconate

Contraindications

  • Known hypersensitivity to sodium ferric gluconate or any ingredient in the formulation.1

  • Evidence of iron overload.1

  • Anemias not associated with iron deficiency.1

Warnings/Precautions

Iron Overload

Not easily eliminated from the body (not dialyzable) and accumulation can be toxic; avoid unwarranted therapy.1

Excess storage of iron may possibly result in a syndrome similar to hemosiderosis, particularly in patients whose anemia is not attributable to iron deficiency (e.g. those with hemoglobinopathies or other refractory anemias that might be erroneously diagnosed as iron deficiency anemia).1 8

Hypotension

Possible hypotension accompanied by flushing, lightheadedness, malaise, fatigue, weakness, or severe pain in the chest, back, flanks, or groin.1 Such reactions are not associated with sensitivity and usually resolve within 1–2 hours.1 2 May require volume expansion if symptomatic.

Sensitivity Reactions

Hypersensitivity Reactions

Potentially fatal sensitivity (e.g. anaphylactic or anaphylactoid) reactions possible; use with caution, particularly in patients with a history of allergic reactions to iron dextran.1

If serious anaphylactoid reactions occur, institute appropriate resuscitative measures.1

Specific Populations

Pregnancy

Category B.1

Lactation

Not known whether sodium ferric gluconate is distributed into milk; use with caution in nursing women.1

Pediatric Use

Safety and efficacy not established in children <6 years of age.1

Contains benzyl alcohol; not recommended for use in neonates.1

Geriatric Use

Insufficient experience in patients ≥65 years of age to determine whether geriatric patients respond differently than younger adults; use caution in dosage selection and adjustment.1

Titrate dosage carefully.1

Common Adverse Effects

Hypotension, nausea, vomiting and/or diarrhea, pain, hypertension, allergic reaction, chest pain, pruritus, back pain.1

Interactions for Sodium Ferric Gluconate

No formal drug interaction studies to date.1

Specific Drugs

Drug

Interaction

Comment

ACE inhibitors

Possible potentiation of adverse effects (e.g., hypotension, sensitivity reactions) associated with IV iron therapy14

Use concomitantly with caution14

Iron, oral

Reduced absorption of oral iron1

Concomitant use not recommended1

Sodium Ferric Gluconate Pharmacokinetics

Distribution

Extent

Ferric iron in plasma combines with transferrin and is carried to the bone marrow and incorporated into hemoglobin.9 27 29 30 31

Elimination

Half-life

Following IV administration, terminal elimination half-life of drug-bound iron was approximately 1 hour in healthy iron-deficient adults.1

Following IV administration of 1.5 or 3 mg/kg, terminal elimination half-life was 2 or 2.5 hours, respectively, in iron-deficient pediatric patients.a

Special Populations

In vitro, <1% of the iron species in a single dose was removed during hemodialysis periods of up to 270 minutes using membranes with pore sizes corresponding to 12,000–14,000 daltons.99

Stability

Storage

Parenteral

Injection

20–25°C (may be exposed to temperatures ranging from 15–30°C).1 Do not freeze.1

Compatibility

For information on systemic interactions resulting from concomitant use, see Interactions.

Parenteral

Sodium ferric gluconate should not be mixed with other drugs or added to parenteral nutrition solutions for IV infusion.1

Solution Compatibility1

Compatible

Sodium Chloride 0.9%

Actions

  • Replenishes and maintains total body content of iron and has pharmacologic actions similar to those of iron dextran.1 8 28

  • Unlike iron dextran, sodium ferric gluconate is free of ferrous ion and dextran polysaccharides and may be associated with fewer sensitivity reactions.1 2 3 10

Advice to Patients

  • Risk of hypersensitivity (e.g., anaphylactoid) reactions.1

  • Importance of women informing their clinician if they are or plan to become pregnant or plan to breast-feed.1

  • Importance of informing clinicians of existing or contemplated concomitant therapy, including prescription and OTC drugs, as well as concomitant illnesses.1

  • Importance of informing patients of other important precautionary information.1 (See Cautions.)

Preparations

Excipients in commercially available drug preparations may have clinically important effects in some individuals; consult specific product labeling for details.

Sodium Ferric Gluconate

Routes

Dosage Forms

Strengths

Brand Names

Manufacturer

Parenteral

Injection, for IV use

equivalent to 12.5 mg of elemental iron per mL

Ferrlecit

Sanofi-Aventis

AHFS DI Essentials. © Copyright, 2004-2014, Selected Revisions November 4, 2013. American Society of Health-System Pharmacists, Inc., 7272 Wisconsin Avenue, Bethesda, Maryland 20814.

References

1. Schein Pharmaceutical, Inc. and R&D Laboratories, Inc. Ferrlecit (sodium ferric gluconate) injection for intravenous use prescribing information. Florham Park, NJ; 2001 Mar.

2. Faich G, Strobos J. Sodium ferric gluconate in sucrose: safer intravenous iron therapy than iron dextrans. Am J Kidney Dis. 1999; 33(3): 464-70.

3. Nissenson AR, Lindsay RM, Swan S et al. Sodium ferric gluconate in sucrose is safe and effective in hemodialysis patients: North American clinical trial. Am J Kidney Dis. 1999; 33(3):471-82. [IDIS 424841] [PubMed 10070911]

4. Nissenson AR. Achieving target hematocrit in dialysis patients: new concepts in iron management. Am J Kidney Dis. 1997; 30(6): 907-11. [IDIS 398274] [PubMed 9398140]

5. National Kidney Foundation. KDOQI clinical practice guidelines and clinical practice recommendations for anemia in chronic kidney disease. Am J Kidney Dis. 2006; 47(suppl 3):S1-S146.

6. Taylor JE, Peat N, Morgan AG. Regular low-dose intravenous iron therapy improves response to epoetin alfa in haemodialysis patients. Nephrol Dial Transplant. 1996; 11:1079-83. [PubMed 8671972]

7. Allegra V, Mengossi G, Vasile A. Iron deficiency in maintenance hemodialysis patients: assessment of diagnosis critieria and of three different iron treatments. Nephron. 1991; 57:175-82. [PubMed 1902285]

8. St. Peter WL, Lewis MJ. Chronic renal insufficiency and end stage renal disease. In: DiPiro JT, Talbert RL, Yee GC et al., eds. Pharmacotherapy: a pathophysiologic approach. 4th ed. Stamford: Appleton and Lange; 1999:752-7.

9. Besarab A, Frinak S, Yee S. An indistinct balance: the safety and efficacy of parenteral iron therapy. J Am Soc Nephrol. 1999; 10:2029-43. [PubMed 10477157]

10. Matzke GR. Intravenous iron supplementation in end-stage renal disease patients. Am J Kidney Dis. 1999; 33(3): 595-7. [IDIS 424849] [PubMed 10070926]

11. Reviewers’ comments (personal observations) on epoetin alfa.

12. Macdougall IC, Tucker B, Thompson J et al. A randomized controlled study of iron supplementation in patients treated with epoetin alfa. Kidney Int. 1996; 50:1694-9. [PubMed 8914038]

13. Macdougall IC, Cavill I, Hulme B et al. Detection of functional iron deficiency during epoetin alfa treatment: a new approach. BMJ. 1992; 304:225-6. [IDIS 291424] [PubMed 1739797]

14. Rolla G, Bucca C, Brussino L. Systemic reactions to intravenous iron therapy in patients receiving angiotensin converting enzyme inhibitor. J Allergy Clin Immunol. 1994; 93(6):1074-5. [IDIS 331147] [PubMed 8006314]

15. Pascual J, Teruel JL, Liaño F et al. Intravenous Fe-gluconate-Na for iron deficient patients on hemodialysis. Nephron. 1992; 60:121. [PubMed 1738405]

16. Pascual J, Teruel JL, Liaño F et al. Sodium ferric gluconate complex given intravenously for iron deficiency in hemodialysis. Clin Nephrol. 1991; 35:87.

17. Anon. Benzyl alcohol may be toxic to newborns. FDA Drug Bull. 1982; 12:10-1. [PubMed 7188569]

18. American Academy of Pediatrics Committee on Fetus and Newborn and Committee on Drugs. Benzyl alcohol: toxic agent in neonatal units. Pediatrics. 1983; 72:356-8. [IDIS 175725] [PubMed 6889041]

19. Zanen AL, Adriaansen HJ, van Bommel EF et al. ”Oversaturation’ of transferrin after intravenous ferric gluconate (Ferrlecit) in haemodialysis patients. Nephron Dial Transplant. 1996; 11:820-4.

20. Schaefer RM, Schaefer L. Management of iron substitution during r-HuEPO therapy in chronic renal failure patients. Erythropoiesis. 1992; 3:71-5.

21. Nissenson AR, Swan S, Lambrecht LL et al. Ferric gluconate (Ferrlecit) is safe in hemodialysis (HD) patients (PTS) who react to iron dextran. J Am soc Nephrol. 1996; 7:1460A.

22. Pascual J, Teruel JL, Liaño F et al. Serious adverse reactions after intravenous ferric gluconate. Nephrol Dial Transplant. 1992; 7(3):271-2.

23. Hallak M, Sharon A, Diukman R et al. Supplementing iron intravenously in pregnancy: a way to avoid blood transfusions. J Reprod Med. 1997; 42(2):99-103. [IDIS 383399] [PubMed 9058345]

24. Fishbane S, Ungureanu VD, Maesaka JK et al. The safety of intravenous iron dextran in hemodialysis patients. Am J Kidney Dis. 1996; 28:529-34. [IDIS 374761] [PubMed 8840942]

25. Fishbane S, Maesaka JK. Iron management in end-stage renal disease. Am J Kidney Dis. 1997; 29(3): 319-33. [IDIS 383000] [PubMed 9041207]

26. Hillman RS. Hematopoietic agents. In: Hardman JG, Limbird LE, Molinoff PB et al., eds. Goodman and Gilman’s the pharmacological basis of therapeutics. 9th ed. New York: McGraw Hill Company; 1995:1311-40.

27. Davies AG, Beamish MR, Jacobs A. Utilization of iron dextran. Br Med J. 1971; 186(21):446-7.

28. Goldberg L. Pharmacology of parenteral iron preparations. In: Wallerstein RO, Mettier SR, eds. Iron in clinical medicine. Berkeley: University of California Press; 1958:74-92.

29. Hanon DB, Hendeles L. A guide to total dose intravenous iron dextran therapy. Am J Hosp Pharm. 1974; 31:592-5. [PubMed 4407476]

30. Henderson PA, Hillman RS. Characteristics of iron dextran utilization in man. Blood. 1969:34:357-75.

31. Patel KM, Tulloch JA. Total dose Imferon (iron–dextran complex) infusion therapy in severe hookworm anaemia. Br Med J. 1967; 2:605-7. [PubMed 6025597]

32. Harper HA et al, eds. Review of physiological chemistry. 16th ed. Los Altos: Lange Medical Publications; 1977:531-4.

33. In: Thorn GW et al, eds. Harrison’s principles of internal medicine. 8th ed. New Yrok: McGraw Hill Company; 1977:1522-1655.

34. Finch CA et al. Ferrokinetics in man. Medicine (Baltimore). 1970; 49:17-53. [PubMed 4908580]

35. In: Goodman LS, Gilman A, eds. The pharmacological basis of therapeutics. 5th ed. New York: McGraw Hill Company; 1975:1309-23.

36. Modell W, Schild HO, Wilson A, eds. Applied pharmacology. Toronto: W.B. Saunders company; 1976:453-9.

37. Meyers FH, Jawetz E, Goldfien A, eds. Review of medical pharmacology. 5th ed. Los Altos: Lange Medical Publications; 1976:446-9.

38. Nissenson AR, Strobos J. Iron deficiency in patients with renal failure. Kidney Int. 1999; 55:S18-S21.

39. Anon. AMA drug evaluations. 3rd ed. Littleton: Publishing Sciences Group, Inc.; 1977; 96-101.

40. Beal RW. Hematinics I: Path–physiological and clinical aspects. Drugs. 1971; 2:191-7.

41. Crichton RR. Ferritin structure, synthesis, and function. N Engl J Med. 1971; 284:1413-22. [PubMed 4931101]

42. Chiow WL. Ferrous sulfate bioavailability monograph. J Am Pharm Assoc. 1976; 17:377-80.

43. Levin RH. Iron deficiency anemia in the pediatric patient. J Am Pharm Assoc. 1971; 11:670-6. [PubMed 5167306]

44. Schein Pharmaceutical, Inc. and R&D Laboratories, Inc., Florham Park, NJ; Personal communication.

45. Hillman RS. Drugs effective in iron deficiency and other hypochromic anemias: iron and iron salts. In: Hardman JG, Limbird LE, Molinoff PB et al, eds. Goodman and Gilman’s the pharmacological basis of therapeutics. 9th ed. New York: McGraw Hill Company; 1995:1317-25.

46. Hillman RS. Iron deficiency and other hypoproliferatie anemias. In: Fauci AS, Braunwald E, Isselbacher KJ et al, eds. Harrison’s principles of internal medicine. 14th ed. New York: McGraw–Hill; 1998:638-45.

47. Domrongkitchaiprn S, Jirakranont B, Atamasrikul K et al. Indices of iron status in continuous ambulatory peritoneal dialysis patients. Am J Kidney Dis. 1999; 34(1):29-35. [IDIS 433261] [PubMed 10401012]

48. Koeller JM, van den Berg C. Anemias. In: Young LY, Koda-Kimble MA, eds. Applied therapeutics: the clinical use of drugs. 6th ed. Vancouver, WA: Applied Therapeutics, Inc.; 1995:88-1-88-17.

49. Jurado RL. Iron, infections, and anemia of inflammation. Clin Infect Dis. 1997; 25:888-95. [PubMed 9356804]

50. Schwenk MH, Halstenson CE. Recombinant human epoetin alfa. DICP Ann Pharmacother. 1989; 23:528-36.

51. Sinai-Trieman L, Salusky IB, Fine RN. Use of subcutaneous recombinant human epoetin alfa in children undergoing continuous cycling peritoneal dialysis. J Pediatr. 1989; 114:550-4. [IDIS 253795] [PubMed 2926567]

52. Cotes PM, Pippard MJ, Reid CD et al. Characterization of anemia of chronic renal failure & mode of its correction by a preparation of human epoetin alfa (r-huepo): an investigation of the pharmacokinetics of IV epoetin alfa and its effects on erythrokinetics. Q J Med. 1989; 70:113-37. [IDIS 255616] [PubMed 2594953]

53. Van Wyck DB, Stivelman JC, Ruiz J et al. Iron status in patients receiving epoetin alfa for dialysis-associated anemia. Kidney Int. 1989; 35:712-6. [IDIS 256549] [PubMed 2709674]

54. Eschbach JW. The anemia of chronic renal failure: pathophysiology and the effects of recombinant epoetin alfa. Kidney Int. 1989; 35:134-48. [IDIS 256550] [PubMed 2651751]

55. Schaefer PM, Kuerner B, Zech M et al. Treatment of the anemia of hemodialysis patients with recombinant human epoetin alfa. Int J Artif Organs. 1988; 11:249-54. [IDIS 256566] [PubMed 3410565]

56. Schwartz AB, Prior J, Terzian L et al. Epoetin alfa for the anemia of chronic renal failure. Am Fam Physician. 1988; 37:211-5. [IDIS 256568] [PubMed 3289343]

57. Eschbach JW, Adamson JW. Recombinant human epoetin alfa: implications for nephrology. Am J Kidney Dis. 1988; 11:203-9. [IDIS 256572] [PubMed 3278599]

58. Kleinman KS, Schweitzer SU, Perdue ST et al. The use of recombinant human epoetin alfa in the correction of anemia in predialysis patients and its effects on renal function: a double blind placebo controlled trial. Abstracts on recombinant epoetin alfa from the American Society of Nephrology 21st annual meeting, San Antonio, TX, December 11-14, 1988. Thorofare, NJ: Special Projects Network; 1988:6. Abstract.

59. Casati S, Passerini P, Campise MR et al. Benefits and risks of protracted treatment with human recombinant epoetin alfa in patients having haemodialysis. BMJ. 1987; 295:1017-20. [IDIS 235359] [PubMed 3120854]

60. Eschbach JW, Kelly MR, Haley NR et al. Treatment of the anemia of progressive renal failure with recombinant human epoetin alfa. N Engl J Med. 1989; 321:158-63. [IDIS 257078] [PubMed 2747747]

61. Eschbach JW, Adamson JW. Correction of the anemia of hemodialysis (HD) patients with recombinant human epoetin alfa (r-HuEPO): results of multicenter study. Selected abstracts on recombinant epoetin alfa from the American Society of Nephrology 20th annual meeting, December 13-16, 1987, Washington, DC. Thorofare, NJ: Special Projects Network; 1988:9.

62. Eschbach JW, Abdulhadi MH, Browne JK et al. Recombinant human epoetin alfa in anemic patients with end-stage renal disease: results of a phase III multicenter clinical trial. Ann Intern Med. 1989; 111:992-1000. [IDIS 261615] [PubMed 2688507]

63. Flaharty KK, Grimm AM, Vlasses PH. Epoetin: recombinant human epoetin alfa. Clin Pharm. 1989; 8:769-82. [IDIS 261096] [PubMed 2680241]

64. Grutzmacher P, Bergmann M, Weinreich T et al. Beneficial and adverse effects of correction of anaemia by recombinant human epoetin alfa in patients on maintenance haemodialysis. Contrib Nephrol. 1988; 66:104-13. [PubMed 3292143]

65. Nielsen OJ, Thaysen JH. Response to epoetin alfa in anaemic haemodialysis patients. J Intern Med.1989; 226:89-94.

66. Scigalla P, Bonzel KE, Bulla M et al. Therapy of renal anemia with recombinant human epoetin alfa in children with end-stage renal disease. Contrib Nephrol. 1989; 76:227- 41. [PubMed 2684524]

67. Macdougall IC, Hutton RD, Cavill I et al. Treating renal anemia with recombinant human epoetin alfa: practical guidelines and a clinical algorithm. Br Med J. 1990; 300:655-9.

68. Macdougall IC, Hutton RD, Cavill I et al. Poor response to treatment of renal anaemia with epoetin alfa corrected by iron given intravenously. BMJ. 1989; 299:157-8. [IDIS 257253] [PubMed 2504356]

69. Pollok M, Bommer J, Gurland HJ et al. Effects of recombinant human epoetin alfa treatment in end-stage renal failure patients: results of a multicenter phase II/III study. Contrib Nephrol. 1989; 76:201-11. [PubMed 2684523]

70. Ortho Biotech Division. Procrit (epoetin alfa) prescribing information. Raritan, NJ; 1997 Feb.

71. Amgen, Inc. Epogen (epoetin alfa) prescribing information (dated 1996 Nov). In: Physicians’ desk reference. 52nd ed. Montvale, NJ: Medical Economics Company Inc; 1998:505-10.

72. Amgen, Thousand Oaks, CA: Personal communication. (formerly ref # 98)

73. Van Wyck DB. Iron deficiency in patients with dialysis-associated anemia during epoetin alfa replacement therapy: strategies for assessment and management. Semin Nephrol. 1989; 9(Suppl 2):21-4. [PubMed 2669082]

74. Eschbach JW, Egrie JC, Downing MR et al. Correction of the anemia of end-stage renal disease with recombinant human epoetin alfa: results of a combined phase I and II clinical trial. N Engl J Med. 1987; 316:73-78. [IDIS 224456] [PubMed 3537801]

75. Gibilaro SD, Delano BG, Quinn R et al. Improved quality of life while receiving recombinant epoetin alfa (rHuEPO). Abstracts on recombinant epoetin alfa from the American Society of Nephrology 21st annual meeting, San Antonio, TX, December 11- 14, 1988. Thorofare, NJ: Special Projects Network; 1988:10. Abstract.

76. Van Wyck DB, Stivelman J, Kirlin L et al. Predicting iron status in patients receiving epoetin alfa for dialysis- associated anemia. Abstracts on recombinant epoetin alfa from the American Society of Nephrology 21st annual meeting, San Antonio, TX, December 11-14, 1988. Thorofare, NJ: Special Projects Network; 1988:16. Abstract.

77. Eschbach JW, Adamson JW. Guidelines for recombinant human epoetin alfa therapy. Am J Kidney Dis. 1989; 14(Suppl 1):2-8. [PubMed 2667349]

78. Kleinman KS, Schweitzer SU, Perdue ST et al. The use of recombinant human epoetin alfa in the correction of anemia in predialysis patients and its effect on renal function: a double-blind, placebo-controlled trial. Am J Kidney Dis. 1989; 14:486-95. [PubMed 2688405]

79. Lim VS, Kirchner PT, Fangman J et al. The safety and the efficacy of maintenance therapy of recombinant human epoetin alfa in patients with renal insufficiency. Am J Kidney Dis. 1989; 14:496-506. [PubMed 2596476]

80. Klingemann HG. Clinical applications of recombinant human colony-stimulating factors. CMAJ. 1989; 140:137-42. [IDIS 251163] [PubMed 2642725]

81. Van Stone JC. Who should receive recombinant human epoetin alfa? Semin Nephrol.1989; 9(Suppl 2):3-7.

82. Anon. Epoetin alfa for anemia. Med Lett Drugs Ther. 1989; 31:85-86. [PubMed 2671624]

83. Macdougall IC, Cavill I, Davies ME et al. Subcutaneous recombinant epoetin alfa in the treatment of renal anaemia in CAPD patients. Contrib Nephrol. 1989; 76:219-26. [PubMed 2582780]

84. Stone WJ, Graber SE, Krantz SB et al. Treatment of the anemia of predialysis patients with recombinant human epoetin alfa: a randomized, placebo-controlled trial. Am J Med Sci. 1988; 171-9. (IDIS 246785)

85. Mohini R. Clinical efficacy of recombinant human epoetin alfa in hemodialysis patients. Semin Nephrol. 1989; 9:16-21. [IDIS 256554] [PubMed 2648516]

86. Anon. Recombinant human epoetin alfa product approved for use in chronic renal failure. Clin Pharm. 1989; 8:531.

87. Kuhn K, Nonnast-Daniel B, Grutzmacher P et al. Analysis of initial resistance of erythropoiesis to treatment with recombinant human epoetin alfa. Contrib Nephrol. 1988; 66:94-103.

88. Ad Hoc Committee for the National Kidney Foundation. Statement on clinical use of recombinant epoetin alfa in anemia of end-stage renal disease. Am J Kidney Dis. 1989; 14:163-9. [PubMed 2672796]

89. Beresford CH. Epoetin alfa. New Z Med J. 1989; 102:185.

90. Watson AJ, Spivak JL. Recombinant human epoetin alfa therapy in end stage renal failure. J Clin Pharmacol. 1988; 28:1086-8. [IDIS 251301] [PubMed 3072351]

91. Anon. Epoetin alfa. Lancet. 1987; 1:781-2. [PubMed 2882187]

92. Stivelman JC. Resistance to recombinant human epoetin alfa therapy; a real clinical entity? Semin Nephrol. 1989; 9(Suppl 2):8-11.

93. Ogden DA. Monitoring considerations in recombinant human epoetin alfa therapy. Semin Nephrol. 1989; 9(Suppl 2):12-5.

94. Wine.dtd CG. Treatment of the anaemia of chronic renal failure with recombinant human epoetin alfa. Drugs. 1989; 3:342-5.

95. Flaharty KK. Clinical pharmacology of recombinant human epoetin alfa (r-HuEPO). Pharmacotherapy. 1990; 10(2 Part 2):9-14S.

96. Erslev AJ. Epoetin alfa. N Engl J Med. 1991; 324:1339-44. [IDIS 280320] [PubMed 2017231]

97. Reviewers’ comments (personal observations).

98. Strobos J, Seligman P, Nissenson A. Transferrin oversaturation. Am J Kidney Dis. 1999; 34:401-2. [IDIS 433119] [PubMed 10465728]

99. Watson Pharma. Ferrlecit (sodium ferric gluconate complex in sucrose injection) prescribing information. Corona, CA; 2001 Nov.

100. Baille GR, Johnson CA, Mason NA. Parenteral iron products for anemia in end-stage renal disease: comparative considerations. Formulary. 2000; 35:498-513.

101. Health care financing administration. Medicare coverage policy decisions: venofer (iron sucrose injection)(#CAG-00080A) decision memorandum. From the HCFA website: ().

a. Watson Pharma. Ferrlecit (sodium ferric gluconate complex in sucrose injection) prescribing information. Corona, CA; 2004 Feb.

Hide
(web3)