Acetaminophen / salicylamide Disease Interactions

There are 9 disease interactions with acetaminophen / salicylamide:

Acetaminophen (Includes Acetaminophen/salicylamide) ↔ Alcoholism

Severe Potential Hazard, High plausibility

Applies to: Alcoholism

Chronic alcohol abusers may be at increased risk of hepatotoxicity during treatment with acetaminophen (APAP). Severe liver injury, including cases of acute liver failure resulting in liver transplant and death, has been reported in patients using acetaminophen. Therapy with acetaminophen should be administered cautiously, if at all, in patients who consume three or more alcoholic drinks a day. In general, patients should avoid drinking alcohol while taking acetaminophen-containing medications. Patients should be warned not to exceed the maximum recommended total daily dosage of acetaminophen (4 g/day in adults and children 12 years of age or older), and to read all prescription and over-the-counter medication labels to ensure they are not taking multiple acetaminophen-containing products, or check with a healthcare professional if they are unsure. They should also be advised to seek medical attention if they experience signs and symptoms of liver injury such as fever, rash, anorexia, nausea, vomiting, fatigue, right upper quadrant pain, dark urine, and jaundice.

References

  1. Whitcomb DC, Block GD "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA 272 (1994): 1845-50
  2. Bonkovsky HL "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  3. Zimmerman HJ, Maddrey WC "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology 22 (1995): 767-73
View all 11 references

Acetaminophen (Includes Acetaminophen/salicylamide) ↔ Liver Disease

Severe Potential Hazard, High plausibility

Applies to: Liver Disease

Acetaminophen is primarily metabolized in the liver to inactive forms. However, small quantities are converted by minor pathways to metabolites that can cause hepatotoxicity or methemoglobinemia. Patients with hepatic impairment may be at increased risk of toxicity due to increased minor metabolic pathway activity. Likewise, chronic or overuse of acetaminophen can saturate the primary hepatic enzymes and lead to increased metabolism by minor pathways. Severe liver injury, including cases of acute liver failure resulting in liver transplant and death, has been reported in patients using acetaminophen. Therapy with acetaminophen should be administered cautiously in patients with hepatic insufficiency. Clinical monitoring of hepatic function is recommended. Instruct patients to avoid drinking alcohol while taking acetaminophen-containing medications. Patients should be warned not to exceed the maximum recommended total daily dosage of acetaminophen (4 g/day in adults and children 12 years of age or older), and to read all prescription and over-the-counter medication labels to ensure they are not taking multiple acetaminophen-containing products, or check with a healthcare professional if they are unsure.

References

  1. Gillette JR "An integrated approach to the study of chemically reactive metabolites of acetaminophen." Arch Intern Med 141 (1981): 375-9
  2. "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical, Raritan, NJ.
  3. Clements JA, Critchley JA, Prescott LF "The role of sulphate conjugation in the metabolism and disposition of oral and intravenous paracetamol in man." Br J Clin Pharmacol 18 (1984): 481-5
View all 6 references

Salicylates (Includes Acetaminophen/salicylamide) ↔ Gi Toxicity

Severe Potential Hazard, High plausibility

Applies to: Duodenitis/Gastritis, Gastrointestinal Hemorrhage, Gastrointestinal Perforation, History - Peptic Ulcer, Peptic Ulcer, Alcoholism, Colitis/Enteritis (Noninfectious), Colonic Ulceration

Salicylates, particularly aspirin, can cause dose-related gastrointestinal bleeding and mucosal damage, which may occur independently of each other. Occult, often asymptomatic GI blood loss is quite common with usual dosages of aspirin and stems from the drug's local effect on the GI mucosa. During chronic therapy, this type of bleeding may occasionally produce iron deficiency anemia. In contrast, major upper GI bleeding rarely occurs except in patients with active peptic ulcers or recent GI bleeding. However, these patients generally do not experience greater occult blood loss than healthy patients following small doses of aspirin. Mucosal damage associated with the use of salicylates may lead to development of peptic ulcers with or without bleeding, reactivation of latent ulcers, and ulcer perforation. Therapy with salicylates and related agents such as salicylamide should be considered and administered cautiously in patients with a history of GI disease or alcoholism, particularly if they are elderly and/or debilitated, since such patients may be more susceptible to the GI toxicity of these drugs and seem to tolerate ulceration and bleeding less well than other individuals. Extreme caution and thorough assessment of risks and benefits are warranted in patients with active or recent GI bleeding or lesions. Whenever possible, especially if prolonged use is anticipated, treatment with non-ulcerogenic agents should be attempted first. If salicylates are used, close monitoring for toxicity is recommended. Some adverse GI effects may be minimized by administration with high dosages of antacids, use of enteric-coated or extended-release formulations, and/or concurrent use of a histamine H2-receptor antagonist or a cytoprotective agent such as misoprostol. Patients with active peptic ulceration or GI bleeding treated with salicylates should generally be administered a concomitant anti-ulcer regimen.

References

  1. Lanas A, Serrano P, Bajador E, Esteva F, Benito R, Sainz R "Evidence of aspirin use in both upper and lower gastrointestinal perforation." Gastroenterology 112 (1997): 683-9
  2. Savon JJ, Allen ML, Dimarino AJ, Hermann GA, Krum RP "Gastrointestinal blood loss with low dose (325 mg) plain and enteric-coated aspirin administration." Am J Gastroenterol 90 (1995): 581-5
  3. American Medical Association, Division of Drugs and Toxicology "Drug evaluations annual 1994." Chicago, IL: American Medical Association; (1994):
View all 19 references

Salicylates (Includes Acetaminophen/salicylamide) ↔ Reye's Syndrome

Severe Potential Hazard, Moderate plausibility

Applies to: Varicella-Zoster, Influenza

The use of salicylates, primarily aspirin, in children with varicella infections or influenza-like illnesses has been associated with an increased risk of Reye's syndrome. Although a causal relationship has not been established, the majority of evidence to date seems to support the association. Most authorities, including the American Academy of Pediatrics Committee on Infectious Diseases, recommend avoiding the use of salicylates in children and teenagers with known or suspected varicella or influenza and during presumed outbreaks of influenza. If antipyretic or analgesic therapy is indicated under these circumstances, acetaminophen may be an appropriate alternative. The same precautions should also be observed with related agents such as salicylamide or diflunisal because of their structural and pharmacological similarities to salicylate.

References

  1. Belay ED, Bresee JS, Holman RC, Khan AS, Shahriari A, Schonberger LB "Reye's syndrome in the United States from 1981 through 1997." N Engl J Med 340 (1999): 1377-82
  2. "Product Information. Salflex (salsalate)." Carnrick Laboratories Inc, Cedar Knolls, NJ.
  3. "Product Information. Rexolate (sodium thiosalicylate)" Hyrex Pharmaceuticals, Memphis, TN.
View all 9 references

Acetaminophen (Includes Acetaminophen/salicylamide) ↔ Pku

Moderate Potential Hazard, High plausibility

Applies to: Phenylketonuria

Several oral acetaminophen and acetaminophen-combination products, particularly flavored chewable tablets, contain the artificial sweetener, aspartame (NutraSweet). Aspartame is converted to phenylalanine in the gastrointestinal tract following ingestion. Chewable and effervescent formulations of acetaminophen products may also contain phenylalanine. The aspartame/phenylalanine content should be considered when these products are used in patients who must restrict their intake of phenylalanine (i.e. phenylketonurics).

References

  1. "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical, Raritan, NJ.

Salicylates (Includes Acetaminophen/salicylamide) ↔ Anemia

Moderate Potential Hazard, Moderate plausibility

Applies to: Anemia

Occult, often asymptomatic GI blood loss occurs quite frequently with the use of normal dosages of aspirin and stems from the drug's local effect on the GI mucosa. During chronic therapy, this type of bleeding may occasionally produce iron deficiency anemia. Other salicylates reportedly cause little or no GI blood loss at usual dosages, but may do so at high dosages. Prolonged therapy with salicylates, particularly aspirin, should be administered cautiously in patients with or predisposed to anemia. Periodic monitoring of hematocrit is recommended. The same precautions should also be observed with the use of related agents such as salicylamide because of their structural and pharmacological similarities to salicylate.

References

  1. Naschitz JE, Yeshurun D, Odeh M, Bassan H, Rosner I, Stermer E, Levy N "Overt gastrointestinal bleeding in the course of chronic low-dose aspirin administration for secondary prevention of arterial occlusive disease." Am J Gastroenterol 85 (1990): 408-11
  2. Savon JJ, Allen ML, Dimarino AJ, Hermann GA, Krum RP "Gastrointestinal blood loss with low dose (325 mg) plain and enteric-coated aspirin administration." Am J Gastroenterol 90 (1995): 581-5
  3. "Product Information. Salflex (salsalate)." Carnrick Laboratories Inc, Cedar Knolls, NJ.
View all 8 references

Salicylates (Includes Acetaminophen/salicylamide) ↔ Coagulation

Moderate Potential Hazard, Moderate plausibility

Applies to: Bleeding, Coagulation Defect, Thrombocytopathy, Thrombocytopenia, Vitamin K Deficiency

All salicylates can interfere with the action of vitamin K and induce a dose-dependent alteration in hepatic synthesis of coagulation factors VII, IX and X. At usual recommended dosages, a slight increase in prothrombin time (PT) may occur. Therapy with salicylates, especially if given in high dosages, should be administered cautiously in patients with significant active bleeding or a hemorrhagic diathesis, including hemostatic and/or coagulation defects associated with hemophilia, vitamin K deficiency, hypoprothombinemia, thrombocytopenia, thrombocytopathy, or severe hepatic impairment. The same precaution should also be observed with the use of related agents such as salicylamide because of their structural and pharmacological similarities to salicylate.

References

  1. Fausa O "Salicylate-induced hypoprothrombinemia: a report of four cases." Acta Med Scand 188 (1970): 403-8
  2. American Medical Association, Division of Drugs and Toxicology "Drug evaluations annual 1994." Chicago, IL: American Medical Association; (1994):
  3. "Product Information. Pepto-Bismol (bismuth subsalicylate)." Procter and Gamble Pharmaceuticals, Cincinnati, OH.
View all 5 references

Salicylates (Includes Acetaminophen/salicylamide) ↔ G-6-Pd Deficiency

Moderate Potential Hazard, Low plausibility

Applies to: G-6-PD Deficiency

Salicylates, particularly aspirin, may cause or aggravate hemolysis in patients with pyruvate kinase or glucose-6-phosphate dehydrogenase (G-6-PD) deficiency. However, this effect has not been clearly established. Until more data are available, therapy with salicylates should be administered cautiously in patients with G-6-PD deficiency. The same precaution should also be observed with the use of related agents such as salicylamide because of their structural and pharmacological similarities to salicylate.

References

  1. "Product Information. Salflex (salsalate)." Carnrick Laboratories Inc, Cedar Knolls, NJ.
  2. "Product Information. Rexolate (sodium thiosalicylate)" Hyrex Pharmaceuticals, Memphis, TN.
  3. "Product Information. Ecotrin (aspirin)." SmithKline Beecham, Philadelphia, PA.

Salicylates (Includes Acetaminophen/salicylamide) ↔ Hepatotoxicity

Moderate Potential Hazard, Moderate plausibility

Applies to: Liver Disease

The use of salicylates has occasionally been associated with acute, reversible hepatotoxicity, primarily manifested as elevations of serum transaminases, alkaline phosphatase and/or, rarely, bilirubin. Hepatic injury consistent with chronic active hepatitis has also been reported in a few patients, which resulted rarely in encephalopathy or death. Salicylate-induced hepatotoxicity appears to be dependent on serum salicylate concentration (> 25 mg/dL) and has occurred most frequently in patients with juvenile arthritis, active systemic lupus erythematosus, rheumatic fever, or preexisting hepatic impairment. Therapy with salicylates, particularly when given in high dosages, should be administered cautiously in these patients, and periodic monitoring of liver function is recommended. The same precautions should also be observed with the use of related agents such as salicylamide because of their structural and pharmacological similarities to salicylate. A dosage reduction may be necessary if liver function abnormalities develop and serum salicylate concentration exceeds 25 mg/dL, although serum transaminase elevations may sometimes be transient and return to pretreatment values despite continued therapy without dosage adjustment.

References

  1. "Product Information. Rexolate (sodium thiosalicylate)" Hyrex Pharmaceuticals, Memphis, TN.
  2. Wolfe JD, Metzger AL, Goldstein RC "Aspirin hepatitis." Ann Intern Med 80 (1974): 74-6
  3. "Product Information. Salflex (salsalate)." Carnrick Laboratories Inc, Cedar Knolls, NJ.
View all 8 references

You should also know about...

acetaminophen / salicylamide drug Interactions

There are 356 drug interactions with acetaminophen / salicylamide

acetaminophen / salicylamide alcohol/food Interactions

There is 1 alcohol/food interaction with acetaminophen / salicylamide

Drug Interaction Classification

The classifications below are a general guideline only. It is difficult to determine the relevance of a particular drug interaction to any individual given the large number of variables.

Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.

Do not stop taking any medications without consulting your healthcare provider.

Disclaimer: Every effort has been made to ensure that the information provided by Multum is accurate, up-to-date and complete, but no guarantee is made to that effect. In addition, the drug information contained herein may be time sensitive and should not be utilized as a reference resource beyond the date hereof. This material does not endorse drugs, diagnose patients, or recommend therapy. Multum's information is a reference resource designed as supplement to, and not a substitute for, the expertise, skill, knowledge, and judgement of healthcare practitioners in patient care. The absence of a warning for a given drug or combination thereof in no way should be construed to indicate that the drug or combination is safe, effective, or appropriate for any given patient. Multum Information Services, Inc. does not assume any responsibility for any aspect of healthcare administered with the aid of information Multum provides. Copyright 2000-2014 Multum Information Services, Inc. The information contained herein is not intended to cover all possible uses, directions, precautions, warnings, drug interactions, allergic reactions, or adverse effects. If you have questions about the drugs you are taking, check with your doctor, nurse, or pharmacist.

Hide
(web1)