Skip to Content

Leukine

Generic Name: Sargramostim
Class: Hematopoietic Agents
VA Class: BL400
Molecular Formula: C639H1002O196S8
CAS Number: 123774-72-1

Medically reviewed on Aug 1, 2018

Introduction

Biosynthetic hematopoietic agent that affects the proliferation and differentiation of a variety of hematopoietic progenitor cells; a yeast-derived (Saccharomyces cerevisiae) recombinant human granulocyte-macrophage colony-stimulating factor (rHuGM-CSF).1 5 131 132

Uses for Leukine

Autologous and Allogeneic Bone Marrow Transplantation

Acceleration of myeloid recovery in adults with non-Hodgkin’s lymphoma, acute lymphocytic (lymphoblastic) leukemia (ALL), or Hodgkin’s disease undergoing cytotoxic chemotherapy and autologous bone marrow transplantation (BMT).1 5 7 8 12 55 75 77 78 91 96 173 174 196

Acceleration of myeloid recovery in patients undergoing allogeneic BMT from HLA-matched related donors.1 5 21 112 173 Also has been used to accelerate myeloid recovery in patients receiving allogeneic BMT from unrelated donors.21

Designated an orphan drug by FDA for use in BMT patients for the management of neutropenia associated with BMT and for the promotion of early engraftment.222

Peripheral Blood Progenitor Cell Transplantation

Mobilization of hematopoietic progenitor cells into peripheral blood for collection by leukapheresis.1

Acceleration of myeloid engraftment following autologous peripheral blood progenitor cell (PBPC) transplantation.1

Bone Marrow Transplantation Failure or Engraftment Delay

Prolongation of survival in adults who have undergone allogeneic or autologous BMT and in whom engraftment is delayed or has failed.1 18 19 Designated an orphan drug by FDA for use in BMT patients for the treatment of delayed or failed engraftment.222

Has been used in a limited number of patients to reduce the period of severe myelosuppression and the risk of infectious complications in patients with delayed engraftment following PBPC transplantation.19

Leukemias

Acceleration of neutrophil recovery and reduction of the incidence of severe and life-threatening infections following induction chemotherapy in adults ≥55 years of age with acute myelogenous leukemia (AML);1 220 safety and efficacy not established in individuals <55 years of age.1

Designated an orphan drug by FDA for use in patients with AML to reduce neutropenia and leukopenia and to increase survival.222

Use of biosynthetic GM-CSFs in patients with acute leukemia has been controversial, since results of in vitro studies indicate that certain leukemic cell lines have receptors for GM-CSF and that these drugs may have a stimulatory effect on leukemic blast cells in vitro.49 52 54 96 203 Some experts state that use of sargramostim in the treatment of myeloid leukemias should be considered investigational and undertaken with caution.49 51 88 96 201

Myelodysplastic Syndromes and Aplastic Anemia

Has been used to increase leukocyte counts in adults with myelodysplastic syndrome (MDS) classified as refractory anemia (RA), refractory anemia with excess blasts (RAEB), or refractory anemia with excess blasts in transformation (RAEB-T);5 43 44 45 47 48 77 91 129 150 151 171 172 however, it is unclear whether sargramostim will alter (either increase or decrease) the rate of progression to AML or alter the usually fatal outcome of the disease.5 10 43 44 45 47 129 150 151 172 189 Generally should be used under protocol conditions.201 206

Has been used with some success to increase leukocyte counts in a limited number of adults and adolescents ≥15 years of age with moderate to severe aplastic anemia.129 134 Generally should be used under protocol conditions.201 206

Neutropenia Associated with HIV Infection and Antiretroviral Therapy

Treatment to correct or minimize HIV-associated neutropenia or drug-induced neutropenia (e.g., neutropenia associated with use of zidovudine, interferon alfa, and/or cytotoxic chemotherapy) in HIV-infected patients.5 34 35 36 37 38 39 96 111 136 138 149 158 159 160 161 189 217 218 219 229 231

Congenital, Cyclic, and Idiopathic Neutropenias

Has been used with variable success in an effort to increase neutrophil counts in patients with various primary neutropenias, including congenital neutropenia,59 186 acquired idiopathic neutropenia,63 and glycogen storage disease type Ib.97 Filgrastim may be more effective than sargramostim and other biosynthetic GM-CSFs, since filgrastim results in more consistent increases in neutrophil counts and does not cause eosinophilia.5 58 59 77 101

Chemotherapy-induced Neutropenia

Treatment to increase neutrophil counts and decrease the risk of infectious complications in patients with malignancies receiving myelosuppressive antineoplastic therapy.5 23 24 26 27 28 29 30 31 33 75 81 87 96 109 110 114 115 120 144 162 163 164 165 166 167 169 184 187 198 199 Has been used prophylactically in a limited number of children with refractory solid tumors receiving myelosuppressive therapy.30

Filgrastim has been used more extensively to date than biosynthetic GM-CSFs in patients with chemotherapy-induced neutropenia;96 168 intermittent low-grade fevers reported in a large proportion of patients receiving GM-CSF therapy5 29 71 95 108 201 but not in those receiving filgrastim therapy.201

Leukine Dosage and Administration

Administration

Administer by IV infusion1 5 30 95 103 or sub-Q injection.1 5 34 59 67 95 104 Sub-Q injection is most convenient for self-administration and especially useful for prolonged maintenance therapy.201

Do not administer sargramostim within 24 hours before or after radiation therapy or chemotherapy.1

Intended for use under the guidance and supervision of a clinician; may be self-administered if clinician determines that patient and/or caregiver is competent to safely administer drug after appropriate instruction.1 (See Advice to Patients.)

IV Administration

For drug compatibility information, see Compatibility under Stability.

IV infusion using an in-line filter is not recommended.1 206 Adsorption of the drug could occur.1 206

Reconstitution

Reconstitute vials containing 250 mcg of sargramostim powder with 1 mL of sterile or bacteriostatic water for injection to provide a solution containing 250 mcg/mL.1 Direct diluent at the side of the vial and gently swirl contents to avoid foaming.1 Avoid shaking or excessive agitation of vial.1 Use care to eliminate air bubbles from the needle hub of the syringe containing the diluent to ensure the correct final concentration.1

Commercially available vials of sargramostim lyophilized powder for injection are for single use only.1 Do not reenter or reuse vials.1

Dilution

For IV infusion, dilute sargramostim injection or further dilute reconstituted solutions of sargramostim powder for injection in 0.9% sodium chloride injection.1

If sargramostim is diluted to a final concentration of <10 mcg/mL, add albumin human to minimize adsorption of the drug to drug delivery system components.1 Add 1 mg of albumin human per 1 mL of 0.9% sodium chloride injection (e.g., dilute 1 mL of 5% albumin human in 50 mL of 0.9% sodium chloride injection).1

Rate of Administration

Patients undergoing BMT: Administer by IV infusion over 2 hours.1 5 8 21

For mobilization of hematopoietic progenitor cells or for acceleration of myeloid engraftment following autologous PBPC transplantation: Administer by continuous IV infusion over 24 hours.1

For BMT failure or engraftment delay: Administer by IV infusion over 2 hours.1 5 18 19

Patients with AML: Administer by IV infusion over 4 hours.1

Sub-Q Administration

For sub-Q injection, administer sargramostim injection or reconstituted solutions without further dilution.1

Reconstitution

Reconstitute vials containing 250 mcg of sargramostim powder for injection with 1 mL of sterile or bacteriostatic water for injection to provide a solution containing 250 mcg/mL.1 Direct diluent at the side of the vial and gently swirl contents to avoid foaming.1 Avoid shaking or excessive agitation of vial.1 Use care to eliminate air bubbles from the needle hub of the syringe containing the diluent to ensure the correct final concentration.1

Commercially available vials of sargramostim lyophilized powder for injection are for single use only.1 Do not reenter or reuse vials.1

Dosage

If a severe adverse reaction occurs, reduce dosage by 50% or temporarily discontinue therapy until the reaction abates.1

Discontinue therapy if blast cells appear on the leukocyte differential or if disease progression occurs.1 5

Temporarily discontinue therapy or reduce dosage by 50% if the ANC is >20,000/mm3 or if the platelet count is >500,000/mm3.1 Base decision to interrupt therapy or reduce dosage on the clinical condition of the patient.1

Pediatric Patients

Neutropenia Associated with HIV Infection and Antiretroviral Therapy
IV or Sub-Q

Adolescents: Dosage of 250 mcg/m2 administered by IV infusion or sub-Q injection once daily for 2–4 weeks has been used.218

Adults

Autologous or Allogeneic Bone Marrow Transplantation
IV

250 mcg/m2 once daily, administered by IV infusion over 2 hours.1 5 8 21 Initiate therapy 2–4 hours after infusion of bone marrow (but no sooner than 24 hours after the last course of radiation therapy or the last dose of chemotherapy).1 5 8 21 Do not initiate therapy until the posttransplantation ANC is <500/mm3.1 Continue until the ANC is >1500/mm3 for 3 consecutive days.1

Peripheral Blood Progenitor Cell Transplantation
Mobilization of Hematopoietic Progenitor Cells
IV or Sub-Q

250 mcg/m2 daily, administered by continuous IV infusion over 24 hours or by sub-Q injection once daily.1 Continue therapy throughout the period of PBPC collection.1 Usually, initiate PBPC collection by day 5 of therapy and perform daily until protocol-specified targets are achieved.1

Reduce dosage by 50% if the leukocyte count increases to >50,000/mm3.1

Administration Following Reinfusion of PBPC Collection
IV or Sub-Q

To accelerate myeloid engraftment following autologous PBPC transplantation, 250 mcg/m2 daily, administered by continuous IV infusion over 24 hours or by sub-Q injection once daily.1 Initiate immediately following infusion of PBPC and continue until the ANC is >1500/mm3 for 3 consecutive days.1

Bone Marrow Transplantation Failure or Engraftment Delay
IV

Initially, 250 mcg/m2 administered by IV infusion over 2 hours once daily1 5 18 19 for 14 consecutive days.1 5 19 Discontinue for 7 consecutive days.1 5 19

If engraftment has not occurred after this 7-day interval, administer a second course of therapy.1 5 For the second course of therapy, administer 250 mcg/m2 by IV infusion over 2 hours once daily for 14 consecutive days.1 5 Discontinue for 7 consecutive days.1 5

If engraftment has not occurred after this 7-day interval, administer a third course of therapy.1 5 For the third course of therapy, administer 500 mcg/m2 by IV infusion over 2 hours once daily for 14 consecutive days.1 5

Leukemias
Acute Myelogenous Leukemia
IV

Initially, 250 mcg/m2 administered by IV infusion over 4 hours once daily.1 Initiate therapy on approximately day 11 or 4 days following completion of induction therapy;1 use only if the bone marrow is hypoplastic with <5% blast cells on day 10.1 If a second cycle of induction chemotherapy is necessary, administer sargramostim therapy approximately 4 days after completion of chemotherapy;1 use only if the bone marrow is hypoplastic with <5% blast cells.1 Continue sargramostim until the ANC is >1500/mm3 for 3 consecutive days or for a maximum of 42 days.1

Temporarily discontinue therapy or reduce dosage by 50% if the ANC is >20,000/mm3.1

Discontinue therapy immediately if leukemia regrowth occurs.1

Myelodysplastic Syndromes andAplastic Anemia
Myelodysplastic Syndromes
IV

Dosages of 15–500 mcg/m2 once daily, administered by IV infusion over 1–12 hours, have been used.44 129 172 Alternatively, dosages of 30–500 mcg/m2 daily, administered by continuous IV infusion over 24 hours, have been used.47 48

Aplastic Anemia
IV

Dosages of 15–480 mcg/m2 once daily, administered by IV infusion over 1–12 hours, have been used.129 Alternatively, dosages of 120–500 mcg/m2 daily, administered by continuous IV infusion over 24 hours, have been used.134

Neutropenia Associated with HIV Infection and Antiretroviral Therapy
IV or Sub-Q

Dosage of 250 mcg/m2 administered by IV infusion or sub-Q injection once daily for 2–4 weeks has been used.218

Prescribing Limits

Adults

Bone Marrow Transplantation Failure or Engraftment Delay
IV

Maximum 3 courses of therapy (500 mcg/m2 daily during the third course) recommended.1 5

Leukemias
Acute Myelogenous Leukemia
IV

Maximum 250 mcg/m2 once daily for 42 days.1

Cautions for Leukine

Contraindications

  • Excessive (i.e., ≥10%) leukemic myeloid blasts in the bone marrow or peripheral blood.1 5

  • Known hypersensitivity to sargramostim, any ingredient in the formulation, or yeast-derived products.1

  • Concomitant use of chemotherapy or radiation therapy.1

Warnings/Precautions

Warnings

Fluid Retention

Possible edema, capillary leak syndrome, and pleural and/or pericardial effusion.1 5 8 Possible precipitation or aggravation of fluid retention, especially in patients with preexisting pleural and pericardial effusions.1

Monitor body weight and hydration status during therapy.201

Use with caution in patients with preexisting fluid retention, pulmonary infiltrates, or CHF.1 5

Respiratory Effects

Possible sequestration of granulocytes in the pulmonary circulation; dyspnea reported occasionally.1

Use with caution in patients with preexisting lung disease and/or hypoxia.1 5

Give special attention to respiratory symptoms that develop during or immediately following administration.1 If dyspnea develops during administration, decrease the IV infusion rate by 50%;1 5 administer oxygen to provide symptomatic relief if necessary.5 106 108 If respiratory symptoms worsen despite reduction in the infusion rate, discontinue the infusion.1 Subsequent doses may be administered according to the usual dosage schedule with careful monitoring.1

Cardiovascular Effects

Possible transient, reversible supraventricular arrhythmia.1

Use with caution in patients with preexisting cardiac disease.1

Increased incidence of syncope with or without hypotension reported with edetate disodium (EDTA)-containing sargramostim injection (formulation no longer commercially available in the US).232 233 234 (See Preparations.) A similar increase in such adverse effects not observed with commercially available sargramostim lyophilized powder for injection (without EDTA).232 233 234

Sensitivity Reactions

Serious allergic or anaphylactic reactions reported rarely.1

Discontinue sargramostim and initiate appropriate therapy if such reactions occur.1

General Precautions

First-dose Reaction

Syndrome characterized by respiratory distress, hypoxia, flushing, hypotension, syncope, and/or tachycardia reported following the first dose of sargramostim in each treatment cycle.1 Manifestations usually resolve with symptomatic treatment and generally do not recur with subsequent doses in the same treatment cycle.1

If a first-dose reaction occurs, provide symptomatic treatment (e.g., oxygen, IV fluids, acetaminophen or NSAIA).106 108

Chemotherapy and Radiation Therapy

Safety and efficacy of concomitant radiation therapy or myelosuppressive antineoplastic agents not established.1 Do not administer sargramostim within 24 hours of radiation therapy or a dose of a myelosuppressive antineoplastic agent.1 (See Interactions.)

Patients who previously received extensive radiation therapy or were exposed to multiple myelotoxic agents (e.g., alkylating agents, anthracycline antibiotics, antimetabolites) may have a limited response to sargramostim therapy following autologous BMT.1 93 122

Patients Receiving Purged Bone Marrow

Is effective in accelerating myeloid recovery following BMT when the marrow is purged by anti-B lymphocyte monoclonal antibodies.1 Patients receiving chemically purged marrow may not respond to sargramostim if the chemical agents cause a clinically important decrease in the number of responsive hematopoietic progenitors;1 if the purging process preserves a sufficient number of progenitors (>1.2 × 104 per kg), sargramostim may provide a beneficial effect on myeloid engraftment.1

Excessive Hematologic Effects

Possible rapid rise in leukocyte count.1 134 Marked leukocytosis (leukocyte count ≥100,000/mm3) reported occasionally.47 Various effects on platelet counts reported in patients receiving biosynthetic GM-CSFs.5 11 24 29 36 94 108 109 122 129

Monitor CBC and platelet counts twice weekly during therapy to avoid potential complications of excessive leukocytosis and/or thrombocytosis.1 5 95 Temporarily discontinue therapy or reduce dosage by 50% if the ANC is >20,000/mm3 or if the platelet count is >500,000/mm3.1

Effect on Malignant Cells

The possibility that sargramostim could act as a growth factor for any tumor type, particularly myeloid malignancies, has not been excluded.1 54 72

Caution recommended in patients with any malignancy with myeloid characteristics.1 43 44 45 47 49 51 88 96 129 215 216 Discontinue therapy if disease progression is detected in patients with non-Hodgkin’s lymphoma, ALL, or Hodgkin’s disease.1

Has been used in patients with MDS or AML without evidence of increased relapse rates;1 43 44 45 47 48 49 52 54 91 96 129 220 however, regrowth of leukemic cells and an increase in leukemic blasts have occurred in a few patients with AML who were receiving the drug.54

When used for mobilization of hematopoietic progenitor cells, possible release of tumor cells from the marrow and subsequent collection in the leukapheresis product; effect of reinfusion of tumor cells not well studied and limited data available to date are inconclusive.1

Laboratory Monitoring

Perform CBC and platelet counts prior to initiation of therapy and routinely (e.g., twice weekly) during therapy.1 5 95

Immunogenicity

Development of anti-GM-CSF antibodies reported occasionally in patients receiving sargramostim.1 100 212 Consider the possibility that formation of anti-GM-CSF antibodies during sargramostim therapy theoretically could result in drug-induced neutropenia, neutralization of endogenous GM-CSF activity, or decreased effectiveness of sargramostim.1 87 100

Specific Populations

Pregnancy

Category C.1

Lactation

Not known whether sargramostim is distributed into milk; use only if clearly needed.1 193

Pediatric Use

Safety and efficacy not established.1 5 30 42 59 However, no unusual adverse effects reported during use in children 4 months to 18 years of age (at daily dosages of 60–1000 mcg/m2 IV or 4–1500 mcg/m2 sub-Q).1 5 30 42 59 Some evidence that children may tolerate higher dosages of biosynthetic GM-CSF compared with adults in the treatment of chemotherapy-induced neutropenia.5 30 82

Avoid administration of solutions containing benzyl alcohol (sargramostim injection, sargramostim powder reconstituted with bacteriostatic water for injection) in neonates.1 Large amounts of benzyl alcohol (i.e., 100–400 mg/kg daily) have been associated with toxicity in neonates.224 225 226 227 228

Geriatric Use

Experience in patients ≥65 years of age limited to those with AML.1 Analysis of general trends in safety and efficacy demonstrate a response in geriatric patients similar to that in younger adults.76 1 The possibility that some older patients may exhibit increased sensitivity to the drug cannot be ruled out.1

Hepatic Impairment

Possible increased concentrations of serum bilirubin and hepatic enzymes.1 21 44

Monitor hepatic function every other week during therapy in patients with hepatic impairment.1 206

Renal Impairment

Possible increased Scr.1 21 44

Monitor renal function every other week during therapy in patients with renal impairment.1 206

Common Adverse Effects

Fever, asthenia, chills, headache, nausea, diarrhea, myalgia, bone pain.1 5 47 55 73 87 112 134 172

Interactions for Leukine

Specific Drugs

Drug

Interaction

Comments

Antineoplastic agents

Sensitivity of rapidly dividing cells to cytotoxic chemotherapy may be increased1

Safety and efficacy of concomitant administration not established.1 Administration of sargramostim within 24 hours of administration of chemotherapy is not recommended1

Didanosine

No evidence of synergism against HIV133 200

Myeloproliferative agents (e.g., corticosteroids, lithium)

Possible additive myeloproliferative effects1

Use with caution1

Zalcitabine

No evidence of synergism against HIV133 200

Zidovudine

Possible pharmacologic and/or pharmacokinetic interaction resulting in additive or synergistic antiretroviral effect3 5 35 39 133 135 136 137 149 157 158 161 200

Leukine Pharmacokinetics

Absorption

Bioavailability

Peak serum concentrations are attained during or immediately after completion of an IV infusion.1

Rapidly absorbed following sub-Q injection,1 67 104 with peak serum concentrations generally attained within 1–4 hours.1 67 104

Duration

In patients with sargramostim-associated leukocytosis or thrombocytosis, excessive blood cell counts usually return to normal or baseline levels within 2–10 days following interruption of therapy.1 11 43 44 47 87 91 94 121 129

Distribution

Extent

Murine GM-CSF is distributed into various tissues including liver, spleen, and kidney in mice.102

Not known whether sargramostim distributes into CSF193 or milk or crosses the placenta in humans.1 193

Elimination

Metabolism

Not known whether sargramostim is metabolized.193

Elimination Route

Elimination route not known.193

Half-life

Terminal elimination half-life is approximately 60 minutes following IV infusion over 2 hours.1

Following sub-Q administration, terminal elimination half-life is approximately 162 minutes.1

Stability

Storage

Parenteral

Powder and Solution

2–8°C;1 206 do not freeze.1

Use solutions reconstituted with sterile water for injection within 6 hours.1 206 Use solutions reconstituted with bacteriostatic water for injection within 20 days.1 206 Administer previously reconstituted solution mixed with freshly reconstituted solution within 6 hours following mixing.1

Compatibility

For information on systemic interactions resulting from concomitant use, see Interactions.

Parenteral

Drug Compatibility
Y-Site CompatibilityHID

Compatible

Amikacin sulfate

Aminophylline

Aztreonam

Bleomycin sulfate

Butorphanol tartrate

Calcium gluconate

Carboplatin

Carmustine

Cefazolin sodium

Cefepime HCl

Cefotaxime sodium

Ceftizoxime sodium

Ceftriaxone sodium

Cefuroxime sodium

Cimetidine HCl

Cisplatin

Clindamycin phosphate

Co-trimoxazole

Cyclophosphamide

Cyclosporine

Cytarabine

Dacarbazine

Dactinomycin

Dexamethasone sodium phosphate

Diphenhydramine HCl

Dopamine HCl

Doxorubicin HCl

Doxycycline hyclate

Droperidol

Etoposide

Famotidine

Fentanyl citrate

Floxuridine

Fluconazole

Fluorouracil

Furosemide

Gentamicin sulfate

Granisetron HCl

Heparin sodium

Idarubicin HCl

Ifosfamide

Immune globulin intravenous

Magnesium sulfate

Mannitol

Meperidine HCl

Mesna

Methotrexate sodium

Metoclopramide HCl

Metronidazole

Mitoxantrone HCl

Pentostatin

Piperacillin sodium–tazobactam sodium

Potassium chloride

Prochlorperazine edisylate

Promethazine HCl

Ranitidine HCl

Teniposide

Ticarcillin disodium–clavulanate potassium

Vinblastine sulfate

Vincristine sulfate

Zidovudine

Incompatible

Acyclovir sodium

Ampicillin sodium

Ampicillin sodium–sulbactam sodium

Chlorpromazine HCl

Ganciclovir sodium

Haloperidol lactate

Hydrocortisone sodium phosphate

Hydrocortisone sodium succinate

Hydromorphone HCl

Hydroxyzine HCl

Imipenem–cilastatin sodium

Lorazepam

Methylprednisolone sodium succinate

Mitomycin

Morphine sulfate

Nalbuphine HCl

Ondansetron HCl

Sodium bicarbonate

Tobramycin sulfate

Variable

Amphotericin B

Amsacrine

Ceftazidime

Vancomycin HCl

Actions

  • Exerts the pharmacologic effects usually produced by endogenous human GM-CSF.1 5 11 85 86 95 132

  • Influences leucopoiesis;1 5 85 95 affects the proliferation and differentiation of a variety of hematopoietic progenitor cells,1 5 131 132 principally in the granulocyte-macrophage lineage.1 11 78 83 84 85 86 87 90 91 132

  • Acts directly on various progenitor target cells5 98 150 203 by binding to GM-CSF-specific receptors on their cell surfaces.1 5 78 83 84 87 88 91 105 140 141 142

  • Induces partially committed progenitor cells to divide and differentiate in the granulocyte-macrophage pathways.1 11 78 83 84 85 86 87 90 91 132 150 151 Also stimulates the proliferation of eosinophils, megakaryocytes, erythroid progenitors, and mast-cell precursors.1 11 46 83 84 85 87 90 132 150

  • Alters the kinetics of myeloid progenitor cells within the bone marrow.5 82 94 198 203 204 Causes rapid entry of cells into the cell cycle and decreases the cell cycle time.5 82 94 198 203 204

  • Produces a dose-dependent11 32 78 84 87 91 122 and biphasic increase in the leukocyte count.24 93 122

  • Enhances certain functions of normal mature neutrophils, eosinophils, basophils, and macrophages78 79 83 85 119 150 (e.g., oxidative metabolism of neutrophils, phagocytosis, eosinophil cytotoxicity, antibody-dependent cellular cytotoxicity, chemotaxis, and hydrogen peroxide production).5 11 24 40 41 78 79 83 85 98 119 150

  • Initiates proliferation in erythroid and megakaryocytic lineages;85 94 122 however, other factors are necessary for production of mature cells in these lineages.85 94 122 Variable effects on platelet counts have been reported.5 11 24 29 36 94 108 109 122 129

  • Leukocyte differentials usually demonstrate a shift to the left (toward progenitor cells) during therapy;24 87 93 94 myelocytes, promyelocytes, and myeloblasts may be present on the differential.24 87 93 94 Absolute lymphocyte and basophil counts generally are unaffected.5 94 108 122

Advice to Patients

  • Importance of clinicians providing patients adequate oral and written instructions regarding proper administration technique.1 Importance of providing a copy of the manufacturer’s information for patients or their caregivers.1

  • Importance of instructing patients who self-administer sargramostim in the home setting on proper dosage and administration of drug; advise patients not to reuse syringes or needles and to properly dispose of such equipment using puncture-resistant containers.1

  • Importance of recognizing and reporting adverse effects (e.g., sensitivity reactions).1

  • Importance of adhering to the treatment regimen, including regular monitoring of blood counts.1

  • Importance of women informing clinicians if they are or plan to become pregnant or plan to breast-feed.1 Advise women of childbearing potential about possible risks to fetus.1

  • Importance of informing clinicians of existing or contemplated concomitant therapy, including prescription and OTC drugs, as well as any concomitant illnesses.1

  • Importance of informing patients of other important precautionary information. (See Cautions.)

Preparations

Excipients in commercially available drug preparations may have clinically important effects in some individuals; consult specific product labeling for details.

Please refer to the ASHP Drug Shortages Resource Center for information on shortages of one or more of these preparations.

Sargramostim injection containing EDTA was withdrawn from the US market as of January 2008 because of reports of increased adverse effects associated with its use.232 233 Any remaining stock of EDTA-containing sargramostim injection should not be used but should be returned to the manufacturer.233 Commercially available sargramostim injection has been reformulated without EDTA.232

Sargramostim (Recombinant DNA Origin)

Routes

Dosage Forms

Strengths

Brand Names

Manufacturer

Parenteral

For injection

250 mcg (1.4 million units)

Leukine

Bayer

Injection

500 mcg/mL (2.8 million units/mL)

Leukine

Bayer

AHFS DI Essentials. © Copyright 2018, Selected Revisions August 1, 2009. American Society of Health-System Pharmacists, Inc., 4500 East-West Highway, Suite 900, Bethesda, Maryland 20814.

† Use is not currently included in the labeling approved by the US Food and Drug Administration.

References

1. Bayer Healthcare. Leukine (sargramostim) prescribing information. Seattle, WA; 2008 Apr.

2. Herrmann F, Brugger W, Kanz L et al. In vivo biology and therapeutic potential of hematopoietic growth factors and circulating progenitor cells. Semin Oncol. 1992; 19: 422-31.

3. Rose RM. The role of colony-stimulating factors in infectious disease: current status, future challenges. Semin Oncol. 1992; 19:415-21. http://www.ncbi.nlm.nih.gov/pubmed/1380731?dopt=AbstractPlus

4. Crosier PS, Clark SC. Basic biology of the hematopoietic growth factors. Semin Oncol. 1992; 19:349-61. http://www.ncbi.nlm.nih.gov/pubmed/1380728?dopt=AbstractPlus

5. Grant SM, Heel RC. Recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF): a review of its pharmacological properties and prospective role in the management of myelosuppression. Drugs. 1992; 43:516-60.

6. Peters WP. Use of cytokines during prolonged neutropenia associated with autologous bone marrow transplantation. Rev Infect Dis. 1991; 13:993-6. http://www.ncbi.nlm.nih.gov/pubmed/1720568?dopt=AbstractPlus

7. Nemunaitis J, Singer JW, Buckner CD et al. Use of recombinant human granulocyte-macrophage colony-stimulating factor in autologous marrow transplantation for lymphoid malignancies. Blood. 1988; 72:834-6. http://www.ncbi.nlm.nih.gov/pubmed/3042050?dopt=AbstractPlus

8. Nemunaitis J, Rabinowe SN, Singer JW et al. Recombinant granulocyte-macrophage colony-stimulating factor after autologous bone marrow transplantation for lymphoid cancer. N Engl J Med. 1991; 324:1773-8. http://www.ncbi.nlm.nih.gov/pubmed/1903847?dopt=AbstractPlus

9. Haas R, Ho AD, Bredthauer U et al. Successful autologous transplantation of blood stem cells mobilized with recombinant human granulocyte-macrophage colony-stimulating factor. Exp Hematol. 1990; 18:94-8. http://www.ncbi.nlm.nih.gov/pubmed/1968009?dopt=AbstractPlus

10. Greenberg PL, Negrin R, Nagler A. Effects of CSFs in preleukemia. Bone Marrow Transplant. 1990; 6(Suppl 1):121-6. http://www.ncbi.nlm.nih.gov/pubmed/1697191?dopt=AbstractPlus

11. Goldstone AH, Khwaja A. The role of haemopoietic growth factors in bone marrow transplantation. Leukemia Research. 1990; 14:721-9. http://www.ncbi.nlm.nih.gov/pubmed/1697007?dopt=AbstractPlus

12. Devereaux S, Linch DC, Gribben JG et al. GM-CSF accelerates neutrophil recovery after autologous bone marrow transplantation for Hodgkin’s disease. Bone Marrow Transplant. 1989; 4:49-54. http://www.ncbi.nlm.nih.gov/pubmed/2647187?dopt=AbstractPlus

13. Brandt SJ, Peters WP, Atwater SK et al. Effect of recombinant human granulocyte-macrophage colony-stimulating factor on hematopoietic reconstitution after high-dose chemotherapy and autologous bone marrow transplantation. N Engl J Med. 1988; 318:869-76. http://www.ncbi.nlm.nih.gov/pubmed/3281007?dopt=AbstractPlus

14. Armitage JO, Bierman PJ, Vose JM et al. Autologous bone marrow transplantation for patients with relapsed Hodgkin’s disease. Am J Med. 1991; 91:605-11. http://www.ncbi.nlm.nih.gov/pubmed/1750430?dopt=AbstractPlus

15. Advani R, Chao NJ, Horning SJ et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjunct to autologous hemopoietic stem cell transplantation for lymphoma. Ann Intern Med. 1992; 116:183-9. http://www.ncbi.nlm.nih.gov/pubmed/1345803?dopt=AbstractPlus

16. Ho AD, Haas R, Korbling M et al. Utilization of recombinant human GM-CSF to enhance peripheral progenitor cell yield for autologous transplantation. Bone Marrow Transplant. 1991; 7(Suppl 1):13-7. http://www.ncbi.nlm.nih.gov/pubmed/1675138?dopt=AbstractPlus

17. Laporte JP, Fouillard L, Douay L et al. GM-CSF instead of autologous bone-marrow transplantation after the BEAM regimen. Lancet. 1991; 338:601-2. http://www.ncbi.nlm.nih.gov/pubmed/1679155?dopt=AbstractPlus

18. Nemunaitis J, Singer JW, Buckner CD et al. Use of recombinant human granulocyte-macrophage colony-stimulating factor in graft failure after bone marrow transplantation. Blood. 1990; 76:245-53. http://www.ncbi.nlm.nih.gov/pubmed/2194592?dopt=AbstractPlus

19. Vose JM, Bierman PJ, Kessinger A et al. The use of recombinant human granulocyte-macrophage colony-stimulating factor for the treatment of delayed engraftment following high dose therapy and autologous hematopoietic stem cell transplantation for lymphoid malignancies. Bone Marrow Transplant. 1991; 7:139-43. http://www.ncbi.nlm.nih.gov/pubmed/1675592?dopt=AbstractPlus

20. De Witte T, Gratwohl A, Van Der Lely N et al. Recombinant human granulocyte-macrophage colony-stimulating factor accelerates neutrophil and monocyte recovery after allogeneic T-cell-depleted bone marrow transplantation. Blood. 1992; 79:1359-65. http://www.ncbi.nlm.nih.gov/pubmed/1536959?dopt=AbstractPlus

21. Nemunaitis J, Anasetti C, Storb R et al. Phase II trial of recombinant human granulocyte-macrophage colony-stimulating factor in patients undergoing allogeneic bone marrow transplantation from unrelated donors. Blood. 1992; 79:2572-7. http://www.ncbi.nlm.nih.gov/pubmed/1586709?dopt=AbstractPlus

22. Powles R, Smith C, Milan S et al. Human recombinant GM-CSF in allogeneic bone-marrow transplantation for leukaemia: double-blind, placebo-controlled trial. Lancet. 1990; 336:1417-20. http://www.ncbi.nlm.nih.gov/pubmed/1978880?dopt=AbstractPlus

23. Logothetis CJ, Dexeus FH, Sella A et al. Escalated therapy for refractory urothelial tumors: methotrexate-vinblastine-doxorubicin-cisplatin plus unglycosylated recombinant human granulocyte-macrophage colony-stimulating factor. J Natl Cancer Inst. 1990; 82:667-72. http://www.ncbi.nlm.nih.gov/pubmed/2181151?dopt=AbstractPlus

24. Lieschke GJ, Morstyn G. Role of G-CSF and GM-CSF in the prevention of chemotherapy-induced neutropenia. In: Mertelsmann R, Herrmann F, eds. Hematopoietic growth factors in clinical applications. New York: Marcel Dekker, Inc; 1990:191-223.

25. Kaplan LD, Kahn JO, Crowe S et al. Clinical and virologic effects of recombinant human granulocyte-macrophage colony-stimulating factor in patients receiving chemotherapy for human immunodeficiency virus-associated non-Hodgkin’s lymphoma: results of a randomized trial. J Clin Oncol. 1991; 9:929-40. http://www.ncbi.nlm.nih.gov/pubmed/2033429?dopt=AbstractPlus

26. Herrmann F, Schulz G, Wieser M et al. Effect of granulocyte-macrophage colony-stimulating factor on neutropenia and related morbidity induced by myelotoxic chemotherapy. Am J Med. 1990; 88:619-24. http://www.ncbi.nlm.nih.gov/pubmed/2189305?dopt=AbstractPlus

27. Gutterman J, Vadhan-Raj S, Logothetis C et al. Effects of granulocyte-macrophage colony-stimulating factor in iatrogenic myelosuppresion, bone marrow failure, and regulation of host defense. Semin Hematol. 1990; 27(Suppl 3):15-24. http://www.ncbi.nlm.nih.gov/pubmed/2198660?dopt=AbstractPlus

28. Gulati SC, Bennett CL. Granulocyte-macrophage colony-stimulating factor (GM-CSF) as adjunct therapy in relapsed Hodgkin disease. Ann Intern Med. 1992; 116:177-82. http://www.ncbi.nlm.nih.gov/pubmed/1728202?dopt=AbstractPlus

29. Gianni AM, Bregni M, Siena S et al. Recombinant human granulocyte-macrophage colony-stimulating factor reduces hematologic toxicity and widens clinical applicability of high-dose cyclophosphamide treatment in breast cancer and non-Hodgkin’s lymphoma. J Clin Oncol. 1990; 8:768-78. http://www.ncbi.nlm.nih.gov/pubmed/2185337?dopt=AbstractPlus

30. Furman WL, Fairclough DL, Huhn RD et al. Therapeutic effects and pharmacokinetics of recombinant human granulocyte-macrophage colony-stimulating factor in childhood cancer patients receiving myelosuppressive chemotherapy. J Clin Oncol. 1991; 9:1022-8. http://www.ncbi.nlm.nih.gov/pubmed/2033415?dopt=AbstractPlus

31. deVries EG, Biesma B, Willemse PH et al. A double-blind placebo-controlled study with granulocyte-macrophage colony-stimulating factor during chemotherapy for ovarian carcinoma. Cancer Res. 1991; 51:116-22. http://www.ncbi.nlm.nih.gov/pubmed/1988077?dopt=AbstractPlus

32. Delannoy A. GM-CSF therapy for drug-induced agranulocytosis. J Intern Med. 1992; 231:269-71. http://www.ncbi.nlm.nih.gov/pubmed/1556524?dopt=AbstractPlus

33. Antmann KS, Griffin JD, Elias A et al. Effect of recombinant human granulocyte-macrophage colony-stimulating factor on chemotherapy-induced myelosuppression. N Engl J Med. 1988; 319:593-8. http://www.ncbi.nlm.nih.gov/pubmed/3045544?dopt=AbstractPlus

34. Scadden DT, Bering HA, Levine JD et al. Granulocyte-macrophage colony-stimulating factor mitigates the neutropenia of combined interferon alfa and zidovudine treatment of acquired immune deficiency syndrome-associated Kaposi’s sarcoma. J Clin Oncol. 1991; 9:802-8. http://www.ncbi.nlm.nih.gov/pubmed/2016623?dopt=AbstractPlus

35. Mitsuyasu RT. Use of recombinant interferons and hematopoietic growth factors in patients infected with human immunodeficiency virus. Rev Infect Dis. 1991; 13:979-84. http://www.ncbi.nlm.nih.gov/pubmed/1720567?dopt=AbstractPlus

36. Levine JD, Allan JD, Tessitore JH et al. Recombinant human granulocyte-macrophage colony-stimulating factor ameliorates zidovudine-induced neutropenia in patients with acquired immunodeficiency syndrome (AIDS)/AIDS-related complex. Blood. 1991; 78:3148-54. http://www.ncbi.nlm.nih.gov/pubmed/1742482?dopt=AbstractPlus

37. Israel DS, Plaisance KI. Neutropenia in patients infected with human immunodeficiency virus. Clin Pharm. 1991; 10:268-79. http://www.ncbi.nlm.nih.gov/pubmed/2032444?dopt=AbstractPlus

38. Groopman JE. Status of colony-stimulating factors in cancer and AIDS. Semin Oncol. 1990; 17(Suppl 1):31-7. http://www.ncbi.nlm.nih.gov/pubmed/2405493?dopt=AbstractPlus

39. Groopman JE. Antiretroviral therapy and immunomodulators in patients with AIDS. Am J Med. 1991; 90(Suppl 4A):18-21S.

40. Baldwin GC, Fuller ND, Roberts RL et al. Granulocyte and granulocyte-macrophage colony-stimulating factors enhance neutrophil cytotoxicity toward HIV-infected cells. Blood. 1989; 74:1673-7. http://www.ncbi.nlm.nih.gov/pubmed/2477084?dopt=AbstractPlus

41. Baldwin GC, Gasson JC, Quan SG et al. Granulocyte-macrophage colony-stimulating factor enhances neutrophil function in acquired immunodeficiency syndrome patients. Proc Natl Acad Sci. 1988; 85:2763-6. http://www.ncbi.nlm.nih.gov/pubmed/3282238?dopt=AbstractPlus http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=pmcentrez&artid=280079&blobtype=pdf

42. Ammann AJ. Biologic and immunomodulating factors in the treatment of pediatric acquired immunodeficiency syndrome. Pediatr Infect Dis J. 1990; 894-904.

43. Cheson BD. The myelodysplastic syndromes: current approaches to therapy. Ann Intern Med. 1990; 112:932-41. http://www.ncbi.nlm.nih.gov/pubmed/2187393?dopt=AbstractPlus

44. Ganser A, Volkers B, Greher J et al. Recombinant human granulocyte-macrophage colony-stimulating factor in patients with myelodysplastic syndromes—a phase I/II trial. Blood. 1989; 73:31-7. http://www.ncbi.nlm.nih.gov/pubmed/2642714?dopt=AbstractPlus

45. Herrmann F, Lindemann A, Klein H et al. Effect of recombinant human granulocyte-macrophage colony-stimulating factor in patients with myelodysplastic syndrome with excess blasts. Leukemia. 1989; 3:335-8. http://www.ncbi.nlm.nih.gov/pubmed/2654495?dopt=AbstractPlus

46. Thompson JA, Lee DJ, Kidd P et al. Subcutaneous granulocyte-macrophage colony-stimulating factor in patients with myelodysplastic syndrome: toxicity, pharmacokinetics, and hematological effects. J Clin Oncol. 1989; 7:629-37. http://www.ncbi.nlm.nih.gov/pubmed/2651578?dopt=AbstractPlus

47. Vadhan-Raj S, Keating M, Le Maistre A et al. Effects of recombinant human granulocyte-macrophage colony-stimulating factor in patients with myelodysplastic syndromes. N Engl J Med. 1987; 317:1545-52. http://www.ncbi.nlm.nih.gov/pubmed/3500414?dopt=AbstractPlus

48. Vadhan-Raj S, Broxmeyer HE, Spitzer G et al. Stimulation of nonclonal hematopoiesis and suppression of the neoplastic clone after treatment with recombinant human granulocyte-macrophage colony-stimulating factor in a patient with therapy-related myelodysplastic syndrome. Blood. 1989; 74:1491-8. http://www.ncbi.nlm.nih.gov/pubmed/2676013?dopt=AbstractPlus

49. Smith T. Successful use of granulocyte-macrophage colony-stimulating factor in patients with acute lymphocytic leukemia. Am J Med. 1990; 89:384-5. http://www.ncbi.nlm.nih.gov/pubmed/2203265?dopt=AbstractPlus

50. Sallerfors S, Olofsson T. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) in serum during induction treatment of acute leukemia. Br J Haematol. 1991; 78:343-51. http://www.ncbi.nlm.nih.gov/pubmed/1714757?dopt=AbstractPlus

51. Estey E, Thall PF, Kantarjian H et al. Treatment of newly diagnosed acute myelogenous leukemia with granulocyte-macrophage colony-stimulating factor (GM-CSF) before and during continuous-infusion high-dose Ara-C + daunorubicin: comparison to patients treated without GM-CSF. Blood. 1992; 79:2246-55. http://www.ncbi.nlm.nih.gov/pubmed/1571541?dopt=AbstractPlus

52. Estey EH, Dixon D, Kantarjian HM et al. Treatment of poor-prognosis, newly diagnosed acute myeloid leukemia with Ara-C and recombinant human granulocyte-macrophage colony-stimulating factor. Blood. 1990; 75:1766-9. http://www.ncbi.nlm.nih.gov/pubmed/2184901?dopt=AbstractPlus

53. Cannistra SA, DiCarlo J, Groshek P et al. Simultaneous administration of granulocyte-macrophage colony-stimulating factor and cytosine arabinoside for the treatment of relapsed acute myeloid leukemia. Leukemia. 1991; 5:230-8. http://www.ncbi.nlm.nih.gov/pubmed/1826536?dopt=AbstractPlus

54. Buchner T, Hiddemann W, Koenigsmann M et al. Recombinant human granulocyte-macrophage colony-stimulating factor after chemotherapy in patients with acute myeloid leukemia at higher age or after relapse. Blood. 1991; 78:1190-7. http://www.ncbi.nlm.nih.gov/pubmed/1878586?dopt=AbstractPlus

55. Blazar BR, Kersey JH, McGlave PB et al. In vivo administration of recombinant human granulocyte/macrophage colony-stimulating factor in acute lymphoblastic leukemia patients receiving purged autografts. Blood. 1989; 73:849-57. http://www.ncbi.nlm.nih.gov/pubmed/2644992?dopt=AbstractPlus

56. Guinan EC, Sieff CA, Oette DH et al. A phase I/II trial of recombinant granulocyte-macrophage colony-stimulating factor for children with aplastic anemia. Blood. 1990; 76:1077-82. http://www.ncbi.nlm.nih.gov/pubmed/2205306?dopt=AbstractPlus

57. Champlin RE, Nimer SD, Ireland P et al. Treatment of refractory aplastic anemia with recombinant human granulocyte-macrophage-colony-stimulating factor. Blood. 1989; 73:694-9. http://www.ncbi.nlm.nih.gov/pubmed/2644986?dopt=AbstractPlus

58. Wodzinski MA, Hampton KK, Reilly JT. Differential effect of G-CSF and GM-CSF in acquired chronic neutropenia. Br J Haematol. 1991; 77:249. http://www.ncbi.nlm.nih.gov/pubmed/1706198?dopt=AbstractPlus

59. Welte K, Zeidler C, Reiter A et al. Differential effects of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in children with severe congenital neutropenia. Blood. 1990; 75:1056-63. http://www.ncbi.nlm.nih.gov/pubmed/1689595?dopt=AbstractPlus

60. Schroten H, Roesler J, Breidenbach T et al. Granulocyte and granulocyte-macrophage colony-stimulating factors for treatment of neutropenia in glycogen storage disease type Ib. J Pediatr. 1991; 119:748-54. http://www.ncbi.nlm.nih.gov/pubmed/1719175?dopt=AbstractPlus

61. Russo CL, Glader BE, Israel RJ et al. Treatment of neutropenia associated with dyskeratosis congenita with granulocyte-macrophage colony-stimulating factor. Lancet. 1990; 336:751-2. http://www.ncbi.nlm.nih.gov/pubmed/1975922?dopt=AbstractPlus

62. Kurzrock R, Talpaz M, Gutterman JU. Treatment of cyclic neutropenia with very low doses of GM-CSF. Am J Med. 1991; 91:317-8. http://www.ncbi.nlm.nih.gov/pubmed/1892155?dopt=AbstractPlus

63. Ganser A, Ottmann OG, Erdmann H et al. The effect of recombinant human granulocyte-macrophage colony-stimulating factor on neutropenia and related morbidity in chronic severe neutropenia. Ann Intern Med. 1989; 111:887-92. http://www.ncbi.nlm.nih.gov/pubmed/2683920?dopt=AbstractPlus

64. Trissel LA, Bready BB, Kwan JW et al. Visual compatibility of sargramostim with selected antineoplastic agents, anti-infectives, or other drugs during simulated Y-site injection. Am J Hosp Pharm. 1992; 49:402-6. http://www.ncbi.nlm.nih.gov/pubmed/1554007?dopt=AbstractPlus

65. Wordell CJ. Addition of albumin to colony-stimulating factor infusions. Hosp Pharm. 1992; 27:421-4.

66. Matsuura G. Visual compatibility of sargramostim (GM-CSF) during simulated Y-site administration with selected agents. Hosp Pharm. 1992; 27:200,202,209.

67. Shadduck RK, Waheed A, Evans C et al. Serum and urinary levels of recombinant human granulocyte-macrophage colony-stimulating factor: assessment after intravenous infusion and subcutaneous injection. Exp Hematol. 1990; 18:601.

68. Donhuijsen K, Haedicke C, Hattenberger S et al. Granulocyte-macrophage colony-stimulating factor-related eosinophilia and Loeffler’s endocarditis. Blood. 1992; 79:2798. http://www.ncbi.nlm.nih.gov/pubmed/1586727?dopt=AbstractPlus

69. Dreicer R, Schiller JH, Carbone PP. Granulocyte-macrophage colony-stimulating factor and vasculitis. Ann Intern Med. 1989; 111:91-2. http://www.ncbi.nlm.nih.gov/pubmed/2660649?dopt=AbstractPlus

70. Tobias JD, Furman WL. Anesthetic considerations in patients receiving colony-stimulating factors (G-CSF and GM-CSF). Anesthesiology. 1991; 75:536-8. http://www.ncbi.nlm.nih.gov/pubmed/1716081?dopt=AbstractPlus

71. Vreugdenhil G, Preyers F, Croockewit S et al. Fever in neutropenic patients treated with GM-CSF representing enhanced host defence. Lancet. 1992; 339:1118-9. http://www.ncbi.nlm.nih.gov/pubmed/1349138?dopt=AbstractPlus

72. Salmon SE, Liu R. Effects of granulocyte-macrophage colony-stimulating factor on in vitro growth of human solid tumors. J Clin Oncol. 1989; 7:1346-50. http://www.ncbi.nlm.nih.gov/pubmed/2671290?dopt=AbstractPlus

73. Vadhan-Raj S, Buescher S, LeMaistre A et al. Stimulation of hematopoiesis in patients with bone marrow failure and in patients with malignancy by recombinant human granulocyte-macrophage colony-stimulating factor. Blood. 1988; 72:134-41. http://www.ncbi.nlm.nih.gov/pubmed/3291976?dopt=AbstractPlus

74. Ryder JW, Lazarus HM, Farhi DC. Bone marrow and blood findings after marrow transplantation and rhGM-CSF therapy. Am J Clin Pathol. 1992; 97:631-7. http://www.ncbi.nlm.nih.gov/pubmed/1575207?dopt=AbstractPlus

75. Vose JM, Bierman PJ, Armitage JO. Granulocyte-macrophage colony-stimulating factor (GM-CSF): answers or more questions? Ann Intern Med. 1992; 116:261-2. Editorial.

76. Shank WA, Balducci L. Recombinant hemopoietic growth factors: comparative hemopoietic response in younger and older subjects. J Am Geriatr Soc. 1992; 40:151-4. http://www.ncbi.nlm.nih.gov/pubmed/1371297?dopt=AbstractPlus

77. Sakamoto KM, Golde DW, Gasson JC. The biology and clinical applications of granulocyte-macrophage colony-stimulating factor. J Pediatr. 1991; 118:S17-20. http://www.ncbi.nlm.nih.gov/pubmed/1999769?dopt=AbstractPlus

78. Ruef C, Coleman DL. Granulocyte-macrophage colony-stimulating factor: pleiotropic cytokine with potential clinical usefulness. Clin Infect Dis. 1990; 12:41-62.

79. Reed SG, Nathan CF, Pihl DL et al. Recombinant granulocyte/macrophage colony-stimulating factor activates macrophages to inhibit Trypanosoma cruzi and release hydrogen peroxide. J Exp Med. 1987; 166:1734-46. http://www.ncbi.nlm.nih.gov/pubmed/3119762?dopt=AbstractPlus http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=pmcentrez&artid=2188783&blobtype=pdf

80. Peters WP. Modifying hematopoiesis with colony-stimulating factors. Am J Clin Pathol. 1992; 97:605-7. http://www.ncbi.nlm.nih.gov/pubmed/1575203?dopt=AbstractPlus

81. Khwaja A, Goldstone AH. Haemopoietic growth factors: stimulation of white cells and platelets may transform cancer chemotherapy. BMJ. 1991; 302:1164-5. http://www.ncbi.nlm.nih.gov/pubmed/2043807?dopt=AbstractPlus http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=pmcentrez&artid=1669889&blobtype=pdf

82. Furman WL, Crist WM. Potential uses of recombinant human granulocyte-macrophage colony-stimulating factor in children. Am J Pediatr Hematol/Oncol. 1991; 13:388-99.

83. Weisbart RH, Golde DW. Physiology of granulocyte and macrophage colony-stimulating factors in host defense. Hematol/Oncol Clin N Am. 1989; 3:401-9.

84. Weisbart RH, Gasson JC, Golde DW. Colony-stimulating factors and host defense. Ann Intern Med. 1989; 110:297-303. http://www.ncbi.nlm.nih.gov/pubmed/2536530?dopt=AbstractPlus

85. Morstyn G, Burgess AW. Hemopoietic growth factors: a review. Cancer Res. 1988; 48:5624-37. http://www.ncbi.nlm.nih.gov/pubmed/2458827?dopt=AbstractPlus

86. Mitsuyasu RT, Golde DW. Clinical role of granulocyte-macrophage colony-stimulating factor. Hematol/Oncol Clin N Am. 1989; 3:411-25.

87. Metcalf D, Morstyn G. Colony-stimulating factors: general biology. In: DeVita VT, Hellman S, Rosenberg SA, eds. Biologic therapy of cancer. JB Lippincott; 1991:417-45.

88. Metcalf D. The colony stimulating factors: discovery, development, and clinical applications. Cancer. 1990; 65:2185-95. http://www.ncbi.nlm.nih.gov/pubmed/2189549?dopt=AbstractPlus

89. Mazur EM, Cohen JL. Basic concepts of hematopoiesis and the hematopoietic growth factors. Clin Pharmacol Ther. 1989; 46:250-5. http://www.ncbi.nlm.nih.gov/pubmed/2673618?dopt=AbstractPlus

90. Metcalf D. The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors. Blood. 1986; 6:257-67.

91. Groopman JE, Molina JM, Scadden DT. Hematopoietic growth factors: biology and clinical applications. N Engl J Med. 1989; 321:1449-59. http://www.ncbi.nlm.nih.gov/pubmed/2682244?dopt=AbstractPlus

92. Grabstein KH, Urdal DL, Tushinski RJ. Induction of macrophage tumoricidal activity by granulocyte-macrophage colony-stimulating factor. Science. 1986; 232:506-8. http://www.ncbi.nlm.nih.gov/pubmed/3083507?dopt=AbstractPlus

93. Gabrilove JL. Colony-stimulating factors: clinical status. In: DeVita VT, Hellman S, Rosenberg SA, eds. Biologic therapy of cancer. JB Lippincott; 1991:445-63.

94. Aglietta M, Piacibello W, Sanavio F et al. Kinetics of human hemopoietic cells after in vivo administration of granulocyte-macrophage colony-stimulating factor. J Clin Invest. 1989; 83:551-7. http://www.ncbi.nlm.nih.gov/pubmed/2643633?dopt=AbstractPlus http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=pmcentrez&artid=303714&blobtype=pdf

95. Lieschke GJ, Burgess AW. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. (First of two parts.) N Engl J Med. 1992; 327:28-35.

96. Lieschke GJ, Burgess AW. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. (Second of two parts.) N Engl J Med. 1992; 327:99-106.

97. Roe TF, Coates TD, Thomas DW et al. Brief report: treatment of chronic inflammatory bowel disease in glycogen storage disease type Ib with colony-stimulating factors. N Engl J Med. 1992; 326:1666-9. http://www.ncbi.nlm.nih.gov/pubmed/1375344?dopt=AbstractPlus

98. Cannistra SA, Griffin JD. Regulation of the production and function of granulocytes and monocytes. Semin Hematol. 1988; 25:173-88. http://www.ncbi.nlm.nih.gov/pubmed/3043672?dopt=AbstractPlus

99. Sulecki M, Rosenfeld GS, Przepiorka D et al. Treatment of ganciclovir-induced neutropenia with recombinant human GM-CSF. Am J Med. 1991; 90:401-2. http://www.ncbi.nlm.nih.gov/pubmed/1848397?dopt=AbstractPlus

100. Gribben JG, Devereux S, Thomas NS et al. Development of antibodies to unprotected glycosylation sites on recombinant human GM-CSF. Lancet. 1990; 335:434-7. http://www.ncbi.nlm.nih.gov/pubmed/1968169?dopt=AbstractPlus

101. Freund MR, Luft S, Schober C et al. Differential effect of GM-CSF and G-CSF in cyclic neutropenia. Lancet. 1990; 336:313. http://www.ncbi.nlm.nih.gov/pubmed/1695985?dopt=AbstractPlus

102. Cebon JS, Bury RW, Lieschke GJ et al. The effects of dose and route of administration on the pharmacokinetics of granulocyte-macrophage colony-stimulating factor. Eur J Can. 1990; 26:1064-9.

103. Stute N, Furman WL, Huhn RD et al. Pharmacokinetics of IV recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) in children with cancer. Clin Pharmacol Ther. 1991; 49:197.

104. Cebon J, Dempsey P, Fox R et al. Pharmacokinetics of human granulocyte-macrophage colony-stimulating factor using a sensitive immunoassay. Blood. 1988; 72:1340-7. http://www.ncbi.nlm.nih.gov/pubmed/3048442?dopt=AbstractPlus

105. Metcalf D. The granulocyte-macrophage colony-stimulating factors. Science. 1985; 229:16-22. http://www.ncbi.nlm.nih.gov/pubmed/2990035?dopt=AbstractPlus

106. Lieschke GJ, Cebon J, Morsty G. Characterization of the clinical effects after the first dose of bacterially synthesized recombinant human granulocyte-macrophage colony-stimulating factor. Blood. 1989; 74:2634-43. http://www.ncbi.nlm.nih.gov/pubmed/2684297?dopt=AbstractPlus

107. Finley RS. Measuring the cost-effectiveness of hematopoietic growth factor therapy. Cancer. 1991; 67:2727-30. http://www.ncbi.nlm.nih.gov/pubmed/1901757?dopt=AbstractPlus

108. Lieschke GJ, Maher D, O’Connor M et al. Phase I study of intravenously administered bacterially synthesized granulocyte-macrophage colony-stimulating factor and comparison with subcutaneous administration. Cancer Res. 1990; 50:606-14. http://www.ncbi.nlm.nih.gov/pubmed/2404573?dopt=AbstractPlus

109. De Vries EG, Biesma B, Willemse PH et al. A double-blind placebo-controlled study with granulocyte-macrophage colony-stimulating factor during chemotherapy for ovarian carcinoma. Cancer Res. 1991; 51:116-22. http://www.ncbi.nlm.nih.gov/pubmed/1988077?dopt=AbstractPlus

110. Barlogie B, Jagannath S, Dixon DO et al. High-dose melphalan and granulocyte-macrophage colony-stimulating factor for refractory multiple myeloma. Blood. 1990; 76:677-80. http://www.ncbi.nlm.nih.gov/pubmed/2200536?dopt=AbstractPlus

111. Davey RT, Davey VJ, Metcalf JA et al. A phase I/II trial of zidovudine, interferon-α, and granulocyte-macrophage colony-stimulating factor in the treatment of human immunodeficiency virus type 1 infection. J Infect Dis. 1991; 164:43-52. http://www.ncbi.nlm.nih.gov/pubmed/1676045?dopt=AbstractPlus

112. Nemunaitis J, Buckner CD, Appelbaum FR et al. Phase I/II trial of recombinant human granulocyte-macrophage colony-stimulating factor following allogeneic bone marrow transplantation. Blood. 1991; 77:2065-71. http://www.ncbi.nlm.nih.gov/pubmed/1902125?dopt=AbstractPlus

113. Gianni AM, Siena S, Bregni M et al. Granylocyte-macrophage colony-stimulating factor to harvest circulating haemopoietic stem cells for autotransplantation. Lancet. 1989; 2:580-5. http://www.ncbi.nlm.nih.gov/pubmed/2570283?dopt=AbstractPlus

114. Ho AD, Del Valle F, Engelhard M et al. Mitoxantrone/high-dose Ara-C and recombinant human GM-CSF in the treatment of refractory non-Hodgkin’s lymphoma. Cancer. 1990; 66:423-30. http://www.ncbi.nlm.nih.gov/pubmed/2194641?dopt=AbstractPlus

115. Steward WP, Scarffe JH, Dirix LY et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) after high-dose melphalan in patients with advanced colon cancer. Br J Cancer. 1990; 61:749-54. http://www.ncbi.nlm.nih.gov/pubmed/1692472?dopt=AbstractPlus http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=pmcentrez&artid=1971606&blobtype=pdf

116. Griffiths MC, ed. USAN 1992: USAN and the USP dictionary of drug names. Rockville, MD: The United States Pharmacopeial Convention, Inc; 1991:526.

117. USP DI Update. No. 7. New United States Adopted Names (USAN). Rockville, MD; The United States Pharmacopeial Convention, Inc; 1992:749.

118. USP DI: drug information for the health care provider. Johnson KW, ed. 13th ed. Rockville, MD: The United States Pharmacopeial Convention, Inc; 1993; 1:910-5.

119. Wing EJ, Magee M, Whiteside TL et al. Recombinant human granulocyte/macrophage colony-stimulating factor enhances monocyte cytotoxicity and secretion of tumor necrosis factor and interferon in cancer patients. Blood. 1989; 643-6.

120. Ho AD, Del Valle F, Haas R et al. Sequential studies on the role of mitoxantrone, high-dose cytarabine, and recombinant human granulocyte-macrophage colony-stimulating factor in the treatment of refractory non-Hodgkin’s lymphoma. Semin Oncol. 1990; 17(Suppl 10):14-9. http://www.ncbi.nlm.nih.gov/pubmed/2259918?dopt=AbstractPlus

121. Socinski MA, Cannistra SA, Elias A et al. Granulocyte-macrophage colony-stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet. 1988; 1:1194-8. http://www.ncbi.nlm.nih.gov/pubmed/2897009?dopt=AbstractPlus

122. Lieschke GJ, Maher D, Cebon J et al. Effects of bacterially synthesized recombinant human granulocyte-macrophage colony-stimulating factor in patients with advanced malignancy. Ann Intern Med. 1989; 110:357-64. http://www.ncbi.nlm.nih.gov/pubmed/2644886?dopt=AbstractPlus

123. Hoekman K, Von Blomberg-Van der Flier BM, Wagstaff J et al. Reversible thyroid dysfunction during treatment with GM-CSF. Lancet. 1991; 338:541-2. http://www.ncbi.nlm.nih.gov/pubmed/1678803?dopt=AbstractPlus

124. Nathan FE, Besa E. GM-CSF and accelerated hemolysis. N Engl J Med. 1992; 326:417. http://www.ncbi.nlm.nih.gov/pubmed/1729635?dopt=AbstractPlus

125. Kluin-Nelemans JC, Hollander AA, Fibber WE et al. Leucocytoclastic vasculitis during GM-CSF therapy. Br J Hematol. 1989; 73:419-20.

126. Farmer KL, Kurzrock R, Gutterman JU et al. Necrotizing vasculitis at granulocyte-macrophage-colony-stimulating factor injection sites. Arch Dermatol. 1990; 126:1243-4. http://www.ncbi.nlm.nih.gov/pubmed/2204310?dopt=AbstractPlus

127. De Vries EG, Willemse PH, Biesma B et al. Flare-up of rheumatoid arthritis during GM-CSF treatment after chemotherapy. Lancet. 1991; 338:517-8. http://www.ncbi.nlm.nih.gov/pubmed/1678479?dopt=AbstractPlus

128. Hazenberg BP, Van Leeuwen MA, Van Rijswijk et al. Correction of granulocytopenia in Felty’s syndrome by granulocyte-macrophage colony-stimulating factor: simultaneous induction of interleukin-6 release and flare-up of the arthritis. Blood. 1989; 74:2769-73. http://www.ncbi.nlm.nih.gov/pubmed/2510837?dopt=AbstractPlus

129. Antin JH, Smith BR, Holmes W et al. Phase I/II study of recombinant human granulocyte-macrophage colony-stimulating factor in aplastic anemia and myelodysplastic syndrome. Blood. 1988; 72:705-13. http://www.ncbi.nlm.nih.gov/pubmed/3042046?dopt=AbstractPlus

130. Nissen C, Tichelli A, Gratwohl A et al. Failure of recombinant human granulocyte-macrophage colony-stimulating factor therapy in aplastic anemia patients with very severe neutropenia. Blood. 1988; 72:2045-7. http://www.ncbi.nlm.nih.gov/pubmed/3264196?dopt=AbstractPlus

131. Cebon J, Nicola N, Ward M et al. Granulocyte-macrophage colony stimulating factor from human lymphocytes. J Biol Chem. 1990; 265:4483-91. http://www.ncbi.nlm.nih.gov/pubmed/2155231?dopt=AbstractPlus

132. Clark SC, Kamen R. The human hematopoietic colony-stimulating factors. Science. 1987; 236:1229-37. http://www.ncbi.nlm.nih.gov/pubmed/3296190?dopt=AbstractPlus

133. Perno CF, Yarchoan R, Cooney DA et al. Replication of human immunodeficiency virus in monocytes. J Exp Med. 1989; 169:933-51. http://www.ncbi.nlm.nih.gov/pubmed/2538549?dopt=AbstractPlus http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=pmcentrez&artid=2189284&blobtype=pdf

134. Vadhan-Raj S, Buescher S, Broxmeyer HE et al. Stimulation of myelopoiesis in patients with aplastic anemia by recombinant human granulocyte-macrophage colony-stimulating factor. N Engl J Med. 1988; 319:1628-34. http://www.ncbi.nlm.nih.gov/pubmed/3059191?dopt=AbstractPlus

135. Hammer SM, Gillis JM, Pinkston P et al. Effect of zidovudine and granulocyte-macrophage colony-stimulating factor on human immunodeficiency virus replication in alveolar macrophages. Blood. 1990; 75:1215-9. http://www.ncbi.nlm.nih.gov/pubmed/2178702?dopt=AbstractPlus

136. Pluda JM, Yarchoan R, Smith PD et al. Subcutaneous recombinant granulocyte-macrophage colony-stimulating factor used as a single agent and in an alternating regimen with azidothymidine in leukopenic patients with severe human immunodeficiency virus infection. Blood. 1990; 76:463-72. http://www.ncbi.nlm.nih.gov/pubmed/2198957?dopt=AbstractPlus

137. Hammer SM, Gillis JM. Synergistic activity of granulocyte-macrophage colony-stimulating factor and 3′-azido-3′-deoxythymidine against human immunodeficiency virus in vitro. Antimicrob Agents Chemother. 1987; 31:1046-50. http://www.ncbi.nlm.nih.gov/pubmed/2444155?dopt=AbstractPlus http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=pmcentrez&artid=174869&blobtype=pdf

138. Groopman JE, Mitsuyasu RT, DeLeo MJ et al. Effect of recombinant human granulocyte-macrophage colony-stimulating factor on myelopoiesis in the acquired immunodeficiency syndrome. N Engl J Med. 1987; 317:593-8. http://www.ncbi.nlm.nih.gov/pubmed/3497344?dopt=AbstractPlus

139. Kurzrock R, Talpaz M, Gutterman JU. Very low doses of GM-CSF administered alone or with erythropoietin in aplastic anemia. Am J Med. 1992; 93:41-8. http://www.ncbi.nlm.nih.gov/pubmed/1626572?dopt=AbstractPlus

140. Park LS, Friend D, Gillis S et al. Characterization of the cell-surface receptor for human granulocyte/macrophage colony-stimulating factor. J Exp Med. 1986; 164:251-62. http://www.ncbi.nlm.nih.gov/pubmed/3014035?dopt=AbstractPlus http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=pmcentrez&artid=2188215&blobtype=pdf

141. Gearing DP, King JA, Gough NM et al. Expression cloning of a receptor for human granulocyte-macrophage colony-stimulating factor. EMBO J. 1989; 8:3667-76. http://www.ncbi.nlm.nih.gov/pubmed/2555171?dopt=AbstractPlus http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=pmcentrez&artid=402049&blobtype=pdf

142. Hayahida K, Kitamura T, Gorman DM et al. Molecular cloning of a second subunit of the receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF): reconstitution of a high-affinity GM-CSF receptor. Proc Natl Acad Sci. 1990; 87:9655-9. http://www.ncbi.nlm.nih.gov/pubmed/1702217?dopt=AbstractPlus http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=pmcentrez&artid=55231&blobtype=pdf

143. Hovgaard D, Mortensen BT, Schifter S et al. Comparative pharmacokinetics of single-dose administration of mammalian and bacterially-derived recombinant human granulocyte-macrophage colony-stimulating factor. Eur J Haematol. 1993; 50:32-6. http://www.ncbi.nlm.nih.gov/pubmed/8436212?dopt=AbstractPlus

144. Saarinen UM, Hovi L, Riikonen P et al. Recombinant human granulocyte-macrophage colony-stimulating factor in children with chemotherapy-induced neutropenia. Med Pediatr Oncol. 1992; 20:489-96. http://www.ncbi.nlm.nih.gov/pubmed/1435519?dopt=AbstractPlus

145. Petros WP, Rabinowitz J, Stuart AR et al. Disposition of recombinant human granulocyte-macrophage colony-stimulating factor in patients receiving high-dose chemotherapy and autologous bone marrow support. Blood. 1992; 80: 1135-40. http://www.ncbi.nlm.nih.gov/pubmed/1515635?dopt=AbstractPlus http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=pmcentrez&artid=2788990&blobtype=pdf

146. Mehregan DR, Fransway AF, Edmonson JH et al. Cutaneous reactions to granulocyte-monocyte colony-stimulating factor. Arch Dermatol. 1992; 128:1055-9. http://www.ncbi.nlm.nih.gov/pubmed/1497358?dopt=AbstractPlus

147. Collins HL, Bancroft GJ. Cytokine enhancement of complement-dependent phagocytosis by macrophages: synergy of tumor necrosis factor-α and granulocyte-macrophage colony-stimulating factor for phagocytosis of Cryptococcus neoformans. Eur J Immunol. 1992; 22:1447-54. http://www.ncbi.nlm.nih.gov/pubmed/1601035?dopt=AbstractPlus

148. Spielberger RT, Falleroni MJ, Coene AJ et al. Concomitant amphotericin B therapy, granulocyte transfusions, and GM-CSF administration for disseminated infection with Fusarium in a granulocytopenic patient. Clin Infect Dis. 1993; 16:528-30. http://www.ncbi.nlm.nih.gov/pubmed/8513060?dopt=AbstractPlus

149. Hewitt RG, Morse GD, Lawrence WD et al. Pharmacokinetics and pharmacodynamics of granulocyte-macrophage colony-stimulating factor and zidovudine in patients with AIDS and severe AIDS-related complex. Antimicrob Agents Chemother. 1993; 512-22.

150. Demetri DG, Antman KHS. Granulocyte-macrophage colony-stimulating factor (GM-CSF): preclinical and clinical investigations. Semin Oncol. 1992; 19:362-85. http://www.ncbi.nlm.nih.gov/pubmed/1509275?dopt=AbstractPlus

151. Vadhan-Raj S. Broxmeyer JE, Hittelman WN. Use of granulocyte-macrophage colony-stimulating factor in hematopoietic disorders: biology and nature of response. Semin Hematol. 1992; 29(Suppl 3):4-13. http://www.ncbi.nlm.nih.gov/pubmed/1492234?dopt=AbstractPlus

152. Shadduck RK. Granulocyte-macrophage colony-stimulating factor: present status. Semin Hematol. 1992; 29(Suppl 3):1-3. http://www.ncbi.nlm.nih.gov/pubmed/1362820?dopt=AbstractPlus

153. Rosenfeld CS, Nemunaitis J. The role of granulocyte-macrophage colony-stimulating factor-stimulated progenitor cells in oncology. Semin Hematol. 1992; 29(Suppl 3):19-26. http://www.ncbi.nlm.nih.gov/pubmed/1362822?dopt=AbstractPlus

154. Shadduck RK. Granulocyte-macrophage colony-stimulating factor: present use and future directions. Semin Hematol. 1992; 29(Suppl 3):38-42. http://www.ncbi.nlm.nih.gov/pubmed/1492233?dopt=AbstractPlus

155. Hiddemann W, Kiehl M, Zuhlsdorf M et al. Granulocyte-macrophage colony-stimulating factor and interleukin-3 enhance the incorporation of cytosine arabinoside into the DNA of leukemic blasts and the cytotoxic effect on clonogenic cells from patients with acute myeloid leukemia. Semin Oncol. 1992; 19(Suppl 4):31-7. http://www.ncbi.nlm.nih.gov/pubmed/1553573?dopt=AbstractPlus

156. Kutsogiannis DJ, Crowther MA, Lazarovits AI. Granulocyte macrophage colony-stimulating factor for the therapy of cytomegalovirus and ganciclovir-induced leukopenia in a renal transplant recipient. Transplantation. 1992; 53: 930-1. http://www.ncbi.nlm.nih.gov/pubmed/1314441?dopt=AbstractPlus

157. Lafeuillade A, Tamalet C, Pellegrino P et al. HIV-l viraemia during granulocyte-macrophage colony stimulating factor therapy. AIDS. 1992; 6:1550-1. http://www.ncbi.nlm.nih.gov/pubmed/1492942?dopt=AbstractPlus

158. Scadden DT. The clinical applications of colony-stimulating factors in acquired immunodeficiency syndrome. Semin Hematol. 1992; 29:33-7. http://www.ncbi.nlm.nih.gov/pubmed/1492232?dopt=AbstractPlus

159. Gill PS, Bernstein-Singer M, Espina BM et al. Adriamycin, bleomycin and vincristine chemotherapy with recombinant granulocyte-macrophage colony-stimulating factor in the treatment of AIDS-related Kaposi’s sarcoma. AIDS. 1992; 6:1477-81. http://www.ncbi.nlm.nih.gov/pubmed/1283520?dopt=AbstractPlus

160. Walsh C, Wernz JC, Levine A et al. Phase I trial of m-BACOD and granulocyte macrophage colony-stimulating factor in HIV-associated non-Hodgkin’s lymphoma. J Acquir Immune Defic Syndr. 1993; 6:265-71. http://www.ncbi.nlm.nih.gov/pubmed/7680712?dopt=AbstractPlus

161. Groopman JE, Feder D. Hematopoietic growth factors in AIDS. Semin Oncol. 1992; 19:408-14. http://www.ncbi.nlm.nih.gov/pubmed/1380730?dopt=AbstractPlus

162. Gerhartz HH, Stern AC, Wolf-Hornung B et al. Intervention treatment of established neutropenia with human recombinant granulocyte-macrophage colony-stimulating factor (rhGM-CSF) in patients undergoing cancer chemotherapy. Leuk Res. 1993; 17:175-85. http://www.ncbi.nlm.nih.gov/pubmed/8429694?dopt=AbstractPlus

163. Miwa S, Shibata A, Kaneko T et al. Phase I/II study of recombinant human granulocyte-macrophage colony-stimulating factor in patients with advanced malignancy. Acta Haematol. 1992; 87:22-8. http://www.ncbi.nlm.nih.gov/pubmed/1585768?dopt=AbstractPlus

164. Ajani JA, Roth JA, Ryan B et al. Intensive preoperative chemotherapy with colony-stimulating factor for resectable adenocarcinoma of the esophagus or gastroesophageal junction. J Clin Oncol. 1993; 11:22-8. http://www.ncbi.nlm.nih.gov/pubmed/8418237?dopt=AbstractPlus

165. Gianni AM, Bregni M, Siena S et al. Granulocyte-macrophage colony-stimulating factor or granulocyte colony-stimulating factor infusion makes high-dose etoposide a safe outpatient regimen that is effective in lymphoma and myeloma patients. J Clin Oncol. 1992; 10:1055-62.

166. Kantarjian HM, Estey EH, O’Brien S et al. Intensive chemotherapy with mitoxantrone and high-dose cytosine arabinoside followed by granulocyte-macrophage colony-stimulating factor in the treatment of patients with acute lymphocytic leukemia. Blood. 1992; 79:876-81. http://www.ncbi.nlm.nih.gov/pubmed/1737098?dopt=AbstractPlus

167. Edmonson JH, Hartmann LC, Long HJ et al. Granulocyte-macrophage colony-stimulating factor. Cancer. 1992; 70:2529-39. http://www.ncbi.nlm.nih.gov/pubmed/1423182?dopt=AbstractPlus

168. Neidhart JA. Hematopoietic colony-stimulating factors: uses in combination with standard chemotherapeutic regimens and in support of dose intensification. Cancer. 1992; 70(Suppl):913-920. http://www.ncbi.nlm.nih.gov/pubmed/1379115?dopt=AbstractPlus

169. Clark DA, Neidhart JA. Granulocyte-macrophage colony-stimulating factor with dose-intensified treatment of cancer. Semin Hematol. 1992; 29(Suppl 3):27-32. http://www.ncbi.nlm.nih.gov/pubmed/1492231?dopt=AbstractPlus

170. Economopoulos T, Papageorgiou E, Stathakis N et al. Treatment of myelodysplastic syndromes with human granulocytic-macrophage colony stimulating factor (GM-CSF) or GM-CSF combined with low-dose cytosine arabinoside. Eur J Haematol. 1992; 49:138-42. http://www.ncbi.nlm.nih.gov/pubmed/1446728?dopt=AbstractPlus

171. Bessho M, Itoh Y, Kataumi S et al. A hematological remission by clonal hematopoiesis after treatment with recombinant human granulocyte-macrophage colony-stimulating factor and erythropoietin in a patient with therapy-related myelodysplastic syndrome. Leuk Res. 1992; 16:123-31. http://www.ncbi.nlm.nih.gov/pubmed/1545564?dopt=AbstractPlus

172. Gradishar WJ, Le Beau MM, O’Laughlin R et al. Clinical and cytogenetic responses to granulocyte-macrophage colony-stimulating factor in therapy-related myelodysplasia. Blood. 1992; 80:2463-70. http://www.ncbi.nlm.nih.gov/pubmed/1421369?dopt=AbstractPlus

173. Singer JW. Role of colony-stimulating factors in bone marrow transplantation. Semin Oncol. 1992; 19:27-31. http://www.ncbi.nlm.nih.gov/pubmed/1615330?dopt=AbstractPlus

174. Armitage JO. The use of granulocyte-macrophage colony-stimulating factor in bone marrow transplantation. Semin Hematol. 1992; 29(Suppl 3):14-8. http://www.ncbi.nlm.nih.gov/pubmed/1362821?dopt=AbstractPlus

175. Fabian I, Shapira E, Gadish M et al. Effects of human interleukin 3, macrophage and granulocyte-macrophage colony-stimulating factor on monocyte function following autologous bone marrow transplantation. Leuk Res. 1992; 16:703-9. http://www.ncbi.nlm.nih.gov/pubmed/1321933?dopt=AbstractPlus

176. Gorin NC, Coiffier B, Hayat M et al. Recombinant human granulocyte-macrophage colony-stimulating factor after high-dose chemotherapy and autologous bone marrow transplantation with unpurged and purged marrow in non-Hodgkin’s lymphoma: a doubleblind placebo-controlled trial. Blood. 1992; 80: 1149-57. http://www.ncbi.nlm.nih.gov/pubmed/1515637?dopt=AbstractPlus http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=pmcentrez&artid=2788990&blobtype=pdf

177. Khwaja A, Linch DC, Goldstone AH et al. Recombinant human granulocyte-macrophage colony-stimulating factor after autologous bone marrow transplantation for malignant lymphoma: a British National Lymphoma Investigation double-blind, placebo-controlled trial. Br J Haematol. 1992; 82:317-23. http://www.ncbi.nlm.nih.gov/pubmed/1419813?dopt=AbstractPlus

178. Kaiser U, Klausmann M, Kolb G et al. Felty’s syndrome: favorable response to granulocyte-macrophage colony-stimulating factor in the acute phase. Acta Haematol. 1992; 87:190-4. http://www.ncbi.nlm.nih.gov/pubmed/1519433?dopt=AbstractPlus

179. Bjorkhom M, Pisa P, Arver S et al. Haematologic effects of granuloctye-macrophage colony stimulating factor in a patient with thiamazole-induced agranulocytosis. J Intern Med. 1992; 232:443-5. http://www.ncbi.nlm.nih.gov/pubmed/1453130?dopt=AbstractPlus

180. Rospond RM, Glowacki RC, Mailliard JA. Sargramostim for sulfasalazine-induced agranulocytosis. Clin Pharm. 1993; 12:179. http://www.ncbi.nlm.nih.gov/pubmed/8098278?dopt=AbstractPlus

181. Kuipers EJ, Vellenga E, de Wolf JTM et al. Sulfasalazine induced agranulocytosis treated with granulocyte-macrophage colony stimulating factor. J Rheumatol. 1992; 19:621-2. http://www.ncbi.nlm.nih.gov/pubmed/1350640?dopt=AbstractPlus

182. Newman SL, Gootee L. Colony-stimulating factors activate human macrophages to inhibit intracellular growth of Histoplasma capsulatum yeasts. Infect Immun. 1992; 60:4593-7. http://www.ncbi.nlm.nih.gov/pubmed/1398972?dopt=AbstractPlus http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=pmcentrez&artid=258207&blobtype=pdf

183. Kantarjian HM, Talpaz M, Kontoyiannis D et al. Treatment of chronic myelogenous leukemia in accelerated and blastic phases with daunorubicin, high-dose cytarabine, and granulocyte-macrophage colony-stimulating factor. Clin Oncol. 1992; 10:398-405.

184. Hovgaard DJ, Nissen NI. Effect of recombinant human granulocyte-macrophage colony-stimulating factor in patients with Hodgkin’s disease: a phase I/II study. J Clin Oncol. 10:390-7.

185. Raychaudhuri SP, Fiore MM. Clearance of unremitting psoriasis after treatment with granulocyte-macrophage colony-stimulating factor. J Am Acad Derm. 1992; 27:451-2. http://www.ncbi.nlm.nih.gov/pubmed/1401283?dopt=AbstractPlus

186. Hess U, Ganser A, Schnuech HG et al. Myelokathexis treated with recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF). Br J Haematol. 1992; 80:254-6. http://www.ncbi.nlm.nih.gov/pubmed/1550786?dopt=AbstractPlus

187. Orazi A, Cattoretti G, Schiro R et al. Recombinant human interleukin-3 and recombinant human granulocyte-macrophage colony-stimulating factor administered in vivo after high-dose cyclophosphamide cancer chemotherapy: effect on hematopoiesis and microenvironment in human bone marrow. Blood. 1992; 79:2610-9. http://www.ncbi.nlm.nih.gov/pubmed/1586713?dopt=AbstractPlus

188. Chasen MR, Sarembock B, Meyers OL. Successful treatment of gold-induced aplastic anaemia with granulocyte macrophage colony stimulating factor. Br J Rheumatol. 1992; 31:428-9. http://www.ncbi.nlm.nih.gov/pubmed/1596710?dopt=AbstractPlus

189. Nimer SD. The use of colony-stimulating factors in primary hematalogic disorders. Cancer. 1992; 70(Suppl 4):921-7. http://www.ncbi.nlm.nih.gov/pubmed/1638464?dopt=AbstractPlus

190. Folk SM, Tefferi A. Letter to the editor: granulocyte-macrophage colony-stimulating factor for the treatment of neutropenia associated with large granular lymphocytic leukemia. Am J Hematol. 1992; 39:316. http://www.ncbi.nlm.nih.gov/pubmed/1553964?dopt=AbstractPlus

191. Brach MA, deVos S, Gruss HJ et al. Prolongation of survival of human polymorphonuclear neutrophils by granulocyte-macrophage colony-stimulating factor is caused by inhibition of programmed cell death. Blood. 1992; 80:2920-4. http://www.ncbi.nlm.nih.gov/pubmed/1280481?dopt=AbstractPlus

192. Ohsaka A, Kitagawa S, Yuo A et al. Effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony- stimulating factor on respiratory burst activity of neutrophils in patients with myelodysplastic syndromes. Clin Exp Immunol. 1993; 91:308-13. http://www.ncbi.nlm.nih.gov/pubmed/7679062?dopt=AbstractPlus http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=pmcentrez&artid=1554685&blobtype=pdf

193. Hoechst-Roussel. Prokine (sargramostim) product information form. Somerville, NJ; 1991 Mar.

194. Yoshida Y, Hirashima K, Asano S et al. A phase II trial of recombinant human granulocyte colony-stimulating factor in the myelodysplastic syndromes. Br J Haematol. 1991; 78: 378-84. http://www.ncbi.nlm.nih.gov/pubmed/1714759?dopt=AbstractPlus

195. Hoechst-Roussel. Prokine (sargramostim) product monograph. Somerville, NJ; 1991.

196. Rabinowe SN, Neuberg D, Bierman PJ et al. Long-term follow-up of a phase III study of recombinant human granulocyte-macrophage colony-stimulating factor after autologous bone marrow transplantation for lymphoid malignancies. Blood. 1993; 81:1903-8. http://www.ncbi.nlm.nih.gov/pubmed/8461475?dopt=AbstractPlus

197. Denzilinger C, Tetzloff W, Gerhartz HH et al. Differential activation of the endogenous leukotriene biosynthesis by two different preparations of granulocyte-macrophage colony-stimulating factor in healthy volunteers. Blood. 1993; 81:2007-13. http://www.ncbi.nlm.nih.gov/pubmed/8386025?dopt=AbstractPlus

198. Vadhan-Raj S, Broxmeyer HE, Hittelman WN et al. Abrogating chemotherapy-induced myelosuppression by recombinant granulocyte- macrophage colony-stimulating factor in patients with sarcoma: protection at the progenitor cell level. J Clin Oncol. 1992; 10:1266-77. http://www.ncbi.nlm.nih.gov/pubmed/1634916?dopt=AbstractPlus

199. Neidhart JA, Mangalik A, Stidley CA et al. Dosing regimen of granulocyte-macrophage colony-stimulating factor to support dose-intensive chemotherapy. J Clin Oncol. 1992; 10:1460- 9. http://www.ncbi.nlm.nih.gov/pubmed/1517789?dopt=AbstractPlus

200. Perno CF, Cooney DA, Gao WY et al. Effects of bone marrow stimulatory cytokines on human immunodeficiency virus replication and the antiviral activity of dideoxynucleosides in cultures of monocyte/macrophages. Blood. 1992; 80: 995-1003. http://www.ncbi.nlm.nih.gov/pubmed/1379854?dopt=AbstractPlus http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=pmcentrez&artid=2788990&blobtype=pdf

201. Reviewers’ comments (personal observations). 1993 Jun.

202. Williams DE, Bicknell DC, Park LS et al. Purified murine granulocyte/macrophage progenitor cells express a high-affinity receptor for recombinant murine granulocyte-macrophage colony-stimulating factor. Proc Natl Acad Sci. 1988; 85:487-91. http://www.ncbi.nlm.nih.gov/pubmed/2829188?dopt=AbstractPlus http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=pmcentrez&artid=279575&blobtype=pdf

203. Broxmeyer HE, Cooper S, Williams DE et al. Growth characteristics of marrow hematopoietic progenitor/precursor cells from patients on a phase I clinical trial with purified recombinant human granulocyte-macrophage colony-stimulating factor. Exp Hematol. 1988; 16:594-602. http://www.ncbi.nlm.nih.gov/pubmed/3260558?dopt=AbstractPlus

204. Broxmeyer HE, Cooper S, Vadhan-Raj S. Cell cycle status of erythroid (BFU-E) progenitor cells from the bone marrow of patients on a clinical trial with purified recombinant human granulocyte- macrophage colony-stimulating factor. Exp Hematol. 1989; 17:455-9. http://www.ncbi.nlm.nih.gov/pubmed/2653858?dopt=AbstractPlus

205. Hardy WD. Combined ganciclovir and recombinant human granulocyte-macrophage colony-stimulating factor in the treatment of cytomegalovirus retinitis in AIDS patients. J Acquir Immune Defic Syndr. 1991; 4(Suppl 1):S22-8. http://www.ncbi.nlm.nih.gov/pubmed/1848618?dopt=AbstractPlus

206. Immunex, Seattle, WA: Personal communication. 1993 Jun 14.

207. Lyman GH, Lyman CG, Sanderson RA et al. Decision analysis of hematopoietic growth factor use in patients receiving cancer chemotherapy. J Natl Cancer Inst. 1993; 85:488-93. http://www.ncbi.nlm.nih.gov/pubmed/8445677?dopt=AbstractPlus

208. Faulds D, Lewis NJW, Milne RJ. Recombinant granulocyte colony-stimulating factor (rG-CSF): pharmacoeconomic considerations in chemotherapy-induced neutropenia. Pharmacoeconomics. 1992; 1:231-49. http://www.ncbi.nlm.nih.gov/pubmed/10147015?dopt=AbstractPlus

209. Crawford J, Glaspy JA. G-CSF for fever and neutropenia induced by chemotherapy. N Engl J Med. 1992; 326:269.

210. Glaspy JA, Bleecker G, Crawford J et al. The impact of therapy with recombinant granulocyte colony stimulating factor (G- CSF) on the health care costs associated with cancer chemotherapy. Blood. 1991; 77(Suppl):139.

211. Levy RD. Repackaging of sargramostim and filgrastim. Hosp Pharm. 1993; 28:70.

212. Gillis S, Garrison L. Antibodies to GM-CSF. Lancet. 1990; 335:1217. http://www.ncbi.nlm.nih.gov/pubmed/1692600?dopt=AbstractPlus

213. Gillis S, Urdal DL, Clevenger W et al. Production of recombinant human colony stimulating factors in yeast. Behring Inst Mitt. 1988; 83:1-7.

214. Cantrell MA, Anderson D, Cerretti DP et al. Cloning, sequence, and expression of a human granulocyte/macrophage colony- stimulating factor. Proc Natl Acad Sci USA. 1985; 82:6250-4. http://www.ncbi.nlm.nih.gov/pubmed/3898082?dopt=AbstractPlus http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=pmcentrez&artid=391030&blobtype=pdf

215. Griffin JD, Young D, Herrmann F et al. Effects of recombinant human GM-CSF on proliferation of clonogenic cells in acute myeloblastic leukemia. Blood. 1986; 67:1448-53. http://www.ncbi.nlm.nih.gov/pubmed/3486012?dopt=AbstractPlus

216. Vellenga E, Young DC, Wagner K et al. The effects of GM-CSF and G-CSF in promoting growth of clonogenic cells in acute myeloblastic leukemia. Blood. 1987; 69:1771-6. http://www.ncbi.nlm.nih.gov/pubmed/3495305?dopt=AbstractPlus

217. Anon. Drugs for AIDS and associated infections. Med Lett Drugs Ther. 1993; 35:79-86. http://www.ncbi.nlm.nih.gov/pubmed/8394503?dopt=AbstractPlus

218. US Public Health Service (USPHS) and Infectious Diseases Society of America (IDSA) Prevention of Opportunistic Infections Working Group. 2001 USPHS/IDSA guidelines for the prevention of opportunistic infections in persons with human immunodeficiency virus. From HIV/AIDS Treatment Information Services (ATIS) website (http://aidsinfo.nih.gov) http://www.cdc.gov/mmwr/PDF/rr/rr4810.pdf

219. Ross SD, DiGeorge A, Connelly JE et al. Safety of GM-CSF in patients with AIDS: a review of the literature. Pharmacotherapy. 1998; 18:1290-7. http://www.ncbi.nlm.nih.gov/pubmed/9855329?dopt=AbstractPlus

220. Rowe JN, Andersen JW, Mazza JJ et al. A randomized placebo-controlled phase III study of granulocyte-macrophage colony-stimulating factor in adult patients (>55 to 70 years of age) with acute myelogenous leukemia: a study of the Eastern Cooperative Oncology Group (E1490). Blood. 1995; 86:457-62. http://www.ncbi.nlm.nih.gov/pubmed/7605984?dopt=AbstractPlus

221. Bishop MR, Andersen JR, Jackson JD et al. High-dose therapy and peripheral blood progenitor cell transplantion: effects of recombinant human granulocyte-macrophage colony-stimulating factor on the autograft. Blood. 1994; 83:610-6. http://www.ncbi.nlm.nih.gov/pubmed/7904489?dopt=AbstractPlus

222. Food and Drug Administration. Orphan designation pursuant to section 526 of the Federal Food Drug and Cosmetic Act as amended by the Orphan Drug Act (P.L. 97-414), to June 1996. Rockville, MD; 1996 Jul.

223. Nemunaitis J, Rosenfeld CS, Ash R et al. Phase III randomized, double-blind placebo-controlled trial of rhGM-CSF following allogeneic bone marrow transplantation. Bone Marrow Transplant. 1995; 72:949-54.

224. American Academy of Pediatrics Committee on Fetus and Newborn and Committee on Drugs. Benzyl alcohol: toxic agent in neonatal units. Pediatrics. 1983; 72:356-8. http://www.ncbi.nlm.nih.gov/pubmed/6889041?dopt=AbstractPlus

225. Anon. Benzyl alcohol may be toxic to newborns. FDA Drug Bull. 1982; 12(2):10-1. http://www.ncbi.nlm.nih.gov/pubmed/7188569?dopt=AbstractPlus

226. Gershanik J, Boecler B, Ensley H et al. The gasping syndrome and benzyl alcohol poisoning. N Engl J Med. 1982; 307:1384-8. http://www.ncbi.nlm.nih.gov/pubmed/7133084?dopt=AbstractPlus

227. Menon PA, Thach BT, Smith CH et al. Benzyl alcohol toxicity in a neonatal intensive care unit: incidence, symptomatology, and mortality. Am J Perinatol. 1984; 1:288-92. http://www.ncbi.nlm.nih.gov/pubmed/6440575?dopt=AbstractPlus

228. Anderson CW, Ng KJ, Andresen B et al. Benzyl alcohol poisoning in a premature newborn infant. Am J Obstet Gynecol. 1984; 148:344-6. http://www.ncbi.nlm.nih.gov/pubmed/6695984?dopt=AbstractPlus

229. Angel JB, High K, Rhame F et al. Phase III study of granulocyte-macrophage colony-stimulating factor in advanced HIV disease: effect on infections, CD4 cell counts and HIV suppression. Leukine/HIV Study Group. AIDS. 2000; 14:387-95. http://www.ncbi.nlm.nih.gov/pubmed/10770541?dopt=AbstractPlus

230. Scadden DT, Pickus O, Hammer SM et al. Lack of in vitro effect of granulocyte-macrophage colony-stimulating factor on human immunodeficiency virus type I. AIDS Res Hum Retroviruses. 1996; 12:1151-9. http://www.ncbi.nlm.nih.gov/pubmed/8844019?dopt=AbstractPlus

231. Wong RJ. Treatment of HIV-related neutropenia. Am J Health Syst Pharm. 1999; 56(Suppl 5):S17-20. http://www.ncbi.nlm.nih.gov/pubmed/10613382?dopt=AbstractPlus

232. Cyrus P. Dear healthcare professional letter regarding important Leukine availability update: liquid Leukine now available. Wayne, NJ: Bayer HealthCare; 2008 May 14.

233. Humphrey J. Dear healthcare professional letter regarding important Leukine safety information: US market withdrawal and replacement program for liquid Leukine. Wayne, NJ: Bayer HealthCare; 2008 Jan 23.

234. Bayer Healthcare, Seattle, WA: Personal communication.

HID. Trissel LA. Handbook on injectable drugs. 14th ed. Bethesda, MD: American Society of Health-System Pharmacists, Inc; 2007:1466-70.

Hide