Skip to main content

Drug Interactions between imatinib and pindolol

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

pindolol imatinib

Applies to: pindolol and imatinib

MONITOR: Coadministration with imatinib may increase the plasma concentrations of drugs that are substrates of CYP450 2C9, 2D6 and/or 3A4. The mechanism is decreased clearance due to inhibition of these isoenzymes by imatinib. According to the manufacturer, imatinib increased the mean peak plasma concentration (Cmax) and systemic exposure (AUC) of simvastatin, a sensitive CYP450 3A4 substrate, by 2- and 3.5-fold, respectively. Data for other substrates are limited, although human liver microsome studies indicate that imatinib is a potent competitive inhibitor of all three isoenzymes.

MANAGEMENT: Caution is advised when imatinib is used concomitantly with drugs that undergo metabolism by CYP450 2C9, 2D6 and/or 3A4, particularly those with a narrow therapeutic range. Dosage adjustments as well as clinical and laboratory monitoring may be appropriate for some drugs whenever imatinib is added to or withdrawn from therapy.

References

  1. (2022) "Product Information. Gleevec (imatinib)." Novartis Pharmaceuticals

Switch to consumer interaction data

Drug and food interactions

Moderate

imatinib food

Applies to: imatinib

GENERALLY AVOID: Coadministration of imatinib with strong CYP450 3A4 inhibitors such as grapefruit juice, may significantly increase the plasma concentrations of imatinib, a known substrate of CYP450 3A4. The proposed mechanism is inhibition of CYP450 3A4-mediated metabolism of imatinib by certain compounds present in grapefruits. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict. In a single-dose study, coadministration of imatinib with ketoconazole (a strong CYP450 3A4 inhibitor) increased imatinib peak plasma concentration (Cmax) and systemic exposure (AUC) by 26% and 40%, respectively.

MANAGEMENT: Patients treated with imatinib should preferably avoid the consumption of grapefruit or grapefruit juice. If coadministration is unavoidable, monitor for prolonged and/or increased pharmacologic effects of imatinib, including edema, hematologic toxicity and immunosuppression.

References

  1. (2022) "Product Information. Gleevec (imatinib)." Novartis Pharmaceuticals
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  3. Cerner Multum, Inc. "Australian Product Information."

Switch to consumer interaction data

Moderate

pindolol food

Applies to: pindolol

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
View all 8 references

Switch to consumer interaction data

Moderate

pindolol food

Applies to: pindolol

ADJUST DOSING INTERVAL: Concurrent administration with calcium salts may decrease the oral bioavailability of atenolol and possibly other beta-blockers. The exact mechanism of interaction is unknown. In six healthy subjects, calcium 500 mg (as lactate, carbonate, and gluconate) reduced the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of atenolol (100 mg) by 51% and 32%, respectively. The elimination half-life increased by 44%. Twelve hours after the combination, beta-blocking activity (as indicated by inhibition of exercise tachycardia) was reduced compared to that with atenolol alone. However, during a 4-week treatment in six hypertensive patients, there was no difference in blood pressure values between treatments. The investigators suggest that prolongation of the elimination half-life induced by calcium coadministration may have led to atenolol cumulation during long-term dosing, which compensated for the reduced bioavailability.

MANAGEMENT: It may help to separate the administration times of beta-blockers and calcium products by at least 2 hours. Patients should be monitored for potentially diminished beta-blocking effects following the addition of calcium therapy.

References

  1. Kirch W, Schafer-Korting M, Axthelm T, Kohler H, Mutschler E (1981) "Interaction of atenolol with furosemide and calcium and aluminum salts." Clin Pharmacol Ther, 30, p. 429-35

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.