Skip to main content

Drug Interactions between Cardizem CD and propafenone

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

dilTIAZem propafenone

Applies to: Cardizem CD (diltiazem) and propafenone

MONITOR: Coadministration with inhibitors of CYP450 3A4 may increase the plasma concentrations of propafenone, which may result in proarrhythmic events and exaggerated beta-adrenergic blocking activity. In over 90% of patients, propafenone is rapidly and extensively converted to 2 active metabolites: 5-hydroxypropafenone via CYP450 2D6 and N-depropylpropafenone (norpropafenone) via CYP450 3A4 and 1A2. In less than 10% of patients (approximately 6% of Caucasians in the U.S. population), however, metabolism of propafenone is slower because the 5-hydroxy metabolite is not formed, or minimally formed, due to a genetic deficiency in CYP450 2D6. In these so-called poor metabolizers of CYP450 2D6, clearance of propafenone via the CYP450 3A4 and 1A2 metabolic pathways becomes more important, and inhibition of these pathways may substantially increase systemic exposure to propafenone. Likewise, patients taking concomitant inhibitors of both CYP450 2D6 and 3A4 may experience similar pharmacokinetic effects.

MANAGEMENT: Caution is advised when propafenone is administered with CYP450 3A4 inhibitors. Therapeutic response to propafenone as well as clinical and electrocardiographic evidence of toxicity should be monitored more closely whenever a CYP450 3A4 inhibitor is added to or withdrawn from therapy, and the propafenone dosage adjusted as necessary. Patients should be monitored for potential adverse effects such as new or worsening arrhythmias or heart failure, edema, bradycardia, and atrioventricular block. Simultaneous use of propafenone with both a CYP450 3A4 inhibitor and a CYP450 2D6 inhibitor (or in patients with CYP450 2D6 deficiency) should be avoided.

References

  1. Botsch S, Gautier JC, Beaune P, Eichelbaum M, Kroemer HK (1993) "Identification and characterization of the cytochrome P450 enzymes involved in N-dealkylation of propafenone: molecular base for interaction potential and variable disposition of active metabolites." Mol Pharmacol, 43, p. 120-6
  2. (2011) "Product Information. Rythmol SR (propafenone)." GlaxoSmithKline
  3. (2023) "Product Information. Apo-Propafenone (propafenone)." Apotex Incorporated
  4. (2022) "Product Information. Propafenone (propafenone)." Accord-UK Ltd
View all 4 references

Switch to consumer interaction data

Drug and food interactions

Moderate

dilTIAZem food

Applies to: Cardizem CD (diltiazem)

MONITOR: Like many CNS-active agents, alcohol can exhibit hypotensive effects. Coadministration with antihypertensive agents including diltiazem may result in additive effects on blood pressure and orthostasis.

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered diltiazem in some patients. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. In a study of ten healthy male volunteers, administration of a single 120 mg oral dose of immediate-release diltiazem in combination with 250 mL of grapefruit juice increased the diltiazem peak plasma concentration (Cmax) and systemic exposure (AUC) by an average of 22% and 20%, respectively, compared to administration with water. The time to reach Cmax (Tmax) and the terminal half-life were not affected, and no statistically significant differences in blood pressure and heart rate were observed during administration with grapefruit juice relative to water. In a different study, repeated administration of 200 mL of grapefruit juice at 0, 2, 4, 8 and 12 hours had no significant effect on the Cmax or AUC of a single 120 mg oral dose of diltiazem, but increased its half-life from 4.1 to 5.1 hours. The ratios for the N-demethyl and deacetyl metabolites to diltiazem were also not affected by grapefruit juice. However, because pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability, the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients should be advised that alcohol may potentiate the hypotensive effects of diltiazem, especially during the initiation of therapy and following a dosage increase. Caution should be exercised when rising from a sitting or recumbent position, and patients should notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients who regularly consume grapefruit or grapefruit juice should be monitored for increased adverse effects of diltiazem such as such as headache, irregular heartbeat, edema, unexplained weight gain, and chest pain. Grapefruit and grapefruit juice should be avoided if an interaction is suspected.

References

  1. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  2. Sigusch H, Henschel L, Kraul H, Merkel U, Hoffmann A (1994) "Lack of effect of grapefruit juice on diltiazem bioavailability in normal subjects." Pharmazie, 49, p. 675-9
  3. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  4. Christensen H, Asberg A, Holmboe AB, Berg KJ (2002) "Coadministration of grapefruit juice increases systemic exposure of diltiazem in healthy volunteers." Eur J Clin Pharmacol, 58, p. 515-520
  5. Cerner Multum, Inc. "UK Summary of Product Characteristics."
View all 5 references

Switch to consumer interaction data

Moderate

propafenone food

Applies to: propafenone

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of propafenone. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. In over 90% of patients, propafenone is rapidly and extensively converted to 2 active metabolites: 5-hydroxypropafenone via CYP450 2D6 and N-depropylpropafenone (norpropafenone) via CYP450 3A4 and 1A2. In less than 10% of patients (approximately 6% of Caucasians in the U.S. population), however, metabolism of propafenone is slower because the 5-hydroxy metabolite is not formed, or minimally formed, due to a genetic deficiency in CYP450 2D6. In these poor metabolizers of CYP450 2D6, clearance of propafenone via the CYP450 3A4 and 1A2 metabolic pathways becomes more important, and inhibition of these pathways may substantially increase systemic exposure to propafenone. Likewise, patients taking concomitant inhibitors of CYP450 2D6 and 3A4 may experience similar pharmacokinetic effects. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased systemic exposure to propafenone may result in proarrhythmic events and exaggerated beta-adrenergic blocking activity.

MANAGEMENT: It may be advisable for patients to avoid the consumption of grapefruit, grapefruit juice, or supplements that contain grapefruit during treatment with propafenone.

References

  1. Botsch S, Gautier JC, Beaune P, Eichelbaum M, Kroemer HK (1993) "Identification and characterization of the cytochrome P450 enzymes involved in N-dealkylation of propafenone: molecular base for interaction potential and variable disposition of active metabolites." Mol Pharmacol, 43, p. 120-6
  2. (2011) "Product Information. Rythmol SR (propafenone)." GlaxoSmithKline
  3. (2023) "Product Information. Apo-Propafenone (propafenone)." Apotex Incorporated
  4. (2022) "Product Information. Propafenone (propafenone)." Accord-UK Ltd
View all 4 references

Switch to consumer interaction data

Moderate

dilTIAZem food

Applies to: Cardizem CD (diltiazem)

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
  2. Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
  3. Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
  6. Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
  7. Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
  10. Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
  12. McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
  13. Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
View all 14 references

Switch to consumer interaction data

Therapeutic duplication warnings

Therapeutic duplication is the use of more than one medicine from the same drug category or therapeutic class to treat the same condition. This can be intentional in cases where drugs with similar actions are used together for demonstrated therapeutic benefit. It can also be unintentional in cases where a patient has been treated by more than one doctor, or had prescriptions filled at more than one pharmacy, and can have potentially adverse consequences.

Duplication

Antiarrhythmics

Therapeutic duplication

The recommended maximum number of medicines in the 'antiarrhythmics' category to be taken concurrently is usually one. Your list includes two medicines belonging to the 'antiarrhythmics' category:

  • Cardizem CD (diltiazem)
  • propafenone

Note: In certain circumstances, the benefits of taking this combination of drugs may outweigh any risks. Always consult your healthcare provider before making changes to your medications or dosage.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.