Skip to main content

Drug Interactions between Cardizem CD and palbociclib

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

dilTIAZem palbociclib

Applies to: Cardizem CD (diltiazem) and palbociclib

MONITOR: Coadministration with inhibitors of CYP450 3A4 may increase the plasma concentrations of palbociclib, which is a substrate of the isoenzyme. In 12 healthy study subjects, administration of a single 125 mg dose of palbociclib with multiple 200 mg daily doses of itraconazole, a potent CYP450 3A4 inhibitor, resulted in 34% and 87% increases in palbociclib peak plasma concentration (Cmax) and systemic exposure (AUC), respectively, compared to palbociclib administered alone. No data are available for use with other, less potent inhibitors.

MANAGEMENT: Caution is advised when palbociclib is used with CYP450 3A4 inhibitors. Dosage adjustment for palbociclib is not generally considered necessary for suspected interactions with mild to moderate inhibitors. However, patients should be monitored for increased adverse effects such as infections, neutropenia, leucopenia, anemia, thrombocytopenia, anorexia, nausea, vomiting, diarrhea, stomatitis, alopecia, asthenia, peripheral neuropathy, and epistaxis.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. (2015) "Product Information. Ibrance (palbociclib)." Pfizer U.S. Pharmaceuticals Group

Switch to consumer interaction data

Drug and food interactions

Moderate

dilTIAZem food

Applies to: Cardizem CD (diltiazem)

MONITOR: Like many CNS-active agents, alcohol can exhibit hypotensive effects. Coadministration with antihypertensive agents including diltiazem may result in additive effects on blood pressure and orthostasis.

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered diltiazem in some patients. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. In a study of ten healthy male volunteers, administration of a single 120 mg oral dose of immediate-release diltiazem in combination with 250 mL of grapefruit juice increased the diltiazem peak plasma concentration (Cmax) and systemic exposure (AUC) by an average of 22% and 20%, respectively, compared to administration with water. The time to reach Cmax (Tmax) and the terminal half-life were not affected, and no statistically significant differences in blood pressure and heart rate were observed during administration with grapefruit juice relative to water. In a different study, repeated administration of 200 mL of grapefruit juice at 0, 2, 4, 8 and 12 hours had no significant effect on the Cmax or AUC of a single 120 mg oral dose of diltiazem, but increased its half-life from 4.1 to 5.1 hours. The ratios for the N-demethyl and deacetyl metabolites to diltiazem were also not affected by grapefruit juice. However, because pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability, the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients should be advised that alcohol may potentiate the hypotensive effects of diltiazem, especially during the initiation of therapy and following a dosage increase. Caution should be exercised when rising from a sitting or recumbent position, and patients should notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients who regularly consume grapefruit or grapefruit juice should be monitored for increased adverse effects of diltiazem such as such as headache, irregular heartbeat, edema, unexplained weight gain, and chest pain. Grapefruit and grapefruit juice should be avoided if an interaction is suspected.

References

  1. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  2. Sigusch H, Henschel L, Kraul H, Merkel U, Hoffmann A (1994) "Lack of effect of grapefruit juice on diltiazem bioavailability in normal subjects." Pharmazie, 49, p. 675-9
  3. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  4. Christensen H, Asberg A, Holmboe AB, Berg KJ (2002) "Coadministration of grapefruit juice increases systemic exposure of diltiazem in healthy volunteers." Eur J Clin Pharmacol, 58, p. 515-520
  5. Cerner Multum, Inc. "UK Summary of Product Characteristics."
View all 5 references

Switch to consumer interaction data

Moderate

palbociclib food

Applies to: palbociclib

GENERALLY AVOID: Grapefruit and/or grapefruit juice may increase the systemic exposure to palbociclib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Increased exposure to palbociclib may increase the risk of adverse effects such as infections, neutropenia, leukopenia, anemia, thrombocytopenia, anorexia, nausea, vomiting, diarrhea, stomatitis, alopecia, asthenia, peripheral neuropathy, and epistaxis.

ADJUST DOSING INTERVAL: Food may enhance the oral bioavailability of palbociclib capsules and reduce the intersubject variability of palbociclib exposure. According to the product labeling, absorption and exposure of palbociclib from its oral capsule formulation were very low in approximately 13% of the population when taken in the fasted state. Food intake increased the palbociclib exposure in this small subset of the population but did not alter exposure in the rest of the population to a clinically relevant extent. Compared to palbociclib capsules given under overnight fasted conditions, the population average palbociclib peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 38% and 21%, respectively, when given with high-fat, high-calorie food (approximately 800 to 1000 calories; 150, 250, and 500 to 600 calories from protein, carbohydrate and fat, respectively); by 27% and 12%, respectively, when given with low-fat, low-calorie food (approximately 400 to 500 calories; 120, 250, and 28 to 35 calories from protein, carbohydrate and fat, respectively); and by 24% and 13%, respectively, when given with moderate-fat, standard calorie food (approximately 500 to 700 calories; 75 to 105, 250 to 350 and 175 to 245 calories from protein, carbohydrate and fat, respectively) one hour before and two hours after palbociclib capsule dosing.

MANAGEMENT: Patients should avoid consumption of grapefruit or grapefruit juice while on treatment with palbociclib. To avoid variability in drug absorption between doses, palbociclib capsules should be taken with food. Palbociclib tablet formulations may be taken with or without food.

References

  1. (2020) "Product Information. Ibrance (palbociclib)." Pfizer Australia Pty Ltd, pfpibrac10620
  2. (2021) "Product Information. Ibrance (palbociclib)." Pfizer Canada Inc
  3. (2023) "Product Information. Ibrance (palbociclib)." Pfizer Ltd
  4. (2022) "Product Information. Ibrance (palbociclib)." Pfizer U.S. Pharmaceuticals Group
View all 4 references

Switch to consumer interaction data

Moderate

dilTIAZem food

Applies to: Cardizem CD (diltiazem)

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
  2. Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
  3. Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
  6. Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
  7. Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
  10. Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
  12. McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
  13. Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
View all 14 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.