Skip to main content

Drug Interactions between Cardizem CD and oliceridine

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

dilTIAZem oliceridine

Applies to: Cardizem CD (diltiazem) and oliceridine

MONITOR CLOSELY: Coadministration with moderate or potent inhibitors of CYP450 2D6 and/or 3A4 may increase the plasma concentrations and adverse opioid effects of oliceridine, which is primarily metabolized by both isoenzymes in vitro. In addition, oliceridine concentrations may decrease following discontinuation of a concomitant moderate or potent CYP450 2D6 or 3A4 inhibitor, possibly resulting in decreased opioid efficacy or withdrawal syndrome. The effect of a CYP450 2D6 inhibitor on the pharmacokinetics of oliceridine has not been studied. However, it may be similar to that reported in CYP450 2D6 poor metabolizers, whose plasma clearance of oliceridine is reduced by approximately 50% compared to those who are nonpoor CYP450 2D6 metabolizers. The clearance may be further reduced with the addition of a CYP450 3A4 inhibitor. When a single 0.25 mg dose of oliceridine was given to poor metabolizers of CYP450 2D6 following pretreatment with the potent CYP450 3A4 inhibitor itraconazole (200 mg once daily for 5 days), oliceridine systemic exposure (AUC) increased by approximately 80% while peak plasma concentration (Cmax) was not significantly affected. Furthermore, mean oliceridine clearance decreased to approximately 30% of that observed in nonpoor metabolizers of CYP450 2D6. The interaction has not been studied with other, less potent CYP450 3A4 inhibitors.

MANAGEMENT: Caution is recommended if oliceridine is used in combination with moderate or potent inhibitors of CYP450 2D6 or 3A4. If concomitant use is considered necessary, patients may require less frequent dosing of oliceridine and should be closely monitored for respiratory depression, sedation, and QT prolongation. If a moderate or potent CYP450 2D6 or 3A4 inhibitor is discontinued, an increase of the oliceridine dosage may be considered while monitoring for signs of opioid withdrawal until stable drug effects are achieved. Due to the prolonged duration of CYP450 2D6 inhibition by the moderate CYP450 2D6 inhibitor rolapitant, prolonged monitoring for adverse effects of oliceridine for at least 28 days after administration of rolapitant may be required.

References

  1. (2015) "Product Information. Varubi (rolapitant)." Tesaro Inc.
  2. (2020) "Product Information. Olinvyk (oliceridine)." Trevena Inc

Switch to consumer interaction data

Drug and food interactions

Major

oliceridine food

Applies to: oliceridine

GENERALLY AVOID: Alcohol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics including oliceridine. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.

GENERALLY AVOID: Grapefruit or grapefruit juice may increase the plasma concentrations of oliceridine by inhibiting the CYP450 3A4-mediated metabolism of oliceridine, although the interaction has not been studied. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients should not consume alcoholic beverages or use drug products that contain alcohol during treatment with oliceridine. Any history of alcohol or illicit drug use should be considered when prescribing oliceridine, and therapy initiated at a lower dosage if necessary. Patients should be closely monitored for signs and symptoms of sedation, respiratory depression, and hypotension. Due to a high degree of interpatient variability with respect to grapefruit juice interactions, patients treated with oliceridine should preferably avoid the consumption of grapefruit and grapefruit juice.

References

  1. (2020) "Product Information. Olinvyk (oliceridine)." Trevena Inc

Switch to consumer interaction data

Moderate

dilTIAZem food

Applies to: Cardizem CD (diltiazem)

MONITOR: Like many CNS-active agents, alcohol can exhibit hypotensive effects. Coadministration with antihypertensive agents including diltiazem may result in additive effects on blood pressure and orthostasis.

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered diltiazem in some patients. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. In a study of ten healthy male volunteers, administration of a single 120 mg oral dose of immediate-release diltiazem in combination with 250 mL of grapefruit juice increased the diltiazem peak plasma concentration (Cmax) and systemic exposure (AUC) by an average of 22% and 20%, respectively, compared to administration with water. The time to reach Cmax (Tmax) and the terminal half-life were not affected, and no statistically significant differences in blood pressure and heart rate were observed during administration with grapefruit juice relative to water. In a different study, repeated administration of 200 mL of grapefruit juice at 0, 2, 4, 8 and 12 hours had no significant effect on the Cmax or AUC of a single 120 mg oral dose of diltiazem, but increased its half-life from 4.1 to 5.1 hours. The ratios for the N-demethyl and deacetyl metabolites to diltiazem were also not affected by grapefruit juice. However, because pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability, the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients should be advised that alcohol may potentiate the hypotensive effects of diltiazem, especially during the initiation of therapy and following a dosage increase. Caution should be exercised when rising from a sitting or recumbent position, and patients should notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients who regularly consume grapefruit or grapefruit juice should be monitored for increased adverse effects of diltiazem such as such as headache, irregular heartbeat, edema, unexplained weight gain, and chest pain. Grapefruit and grapefruit juice should be avoided if an interaction is suspected.

References

  1. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  2. Sigusch H, Henschel L, Kraul H, Merkel U, Hoffmann A (1994) "Lack of effect of grapefruit juice on diltiazem bioavailability in normal subjects." Pharmazie, 49, p. 675-9
  3. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  4. Christensen H, Asberg A, Holmboe AB, Berg KJ (2002) "Coadministration of grapefruit juice increases systemic exposure of diltiazem in healthy volunteers." Eur J Clin Pharmacol, 58, p. 515-520
  5. Cerner Multum, Inc. "UK Summary of Product Characteristics."
View all 5 references

Switch to consumer interaction data

Moderate

dilTIAZem food

Applies to: Cardizem CD (diltiazem)

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
  2. Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
  3. Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
  6. Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
  7. Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
  10. Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
  12. McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
  13. Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
View all 14 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.