Drug Interactions between brompheniramine / codeine / phenylpropanolamine and pentobarbital
This report displays the potential drug interactions for the following 2 drugs:
- brompheniramine/codeine/phenylpropanolamine
- pentobarbital
Interactions between your drugs
codeine PENTobarbital
Applies to: brompheniramine / codeine / phenylpropanolamine and pentobarbital
GENERALLY AVOID: Concomitant use of opioids with benzodiazepines or other central nervous system (CNS) depressants (e.g., nonbenzodiazepine sedatives/hypnotics, anxiolytics, muscle relaxants, general anesthetics, antipsychotics, other opioids, alcohol) may result in profound sedation, respiratory depression, coma, and death. The risk of hypotension may also be increased with some CNS depressants (e.g., alcohol, benzodiazepines, phenothiazines).
MANAGEMENT: The use of opioids in conjunction with benzodiazepines or other CNS depressants should generally be avoided unless alternative treatment options are inadequate. If coadministration is necessary, the dosage and duration of each drug should be limited to the minimum required to achieve desired clinical effect, with cautious titration and dosage adjustments when needed. Patients should be monitored closely for signs and symptoms of respiratory depression and sedation, and advised to avoid driving or operating hazardous machinery until they know how these medications affect them. Cough medications containing opioids (e.g., codeine, hydrocodone) should not be prescribed to patients using benzodiazepines or other CNS depressants including alcohol. For patients who have been receiving extended therapy with both an opioid and a benzodiazepine and require discontinuation of either medication, a gradual tapering of dose is advised, since abrupt withdrawal may lead to withdrawal symptoms. Severe cases of benzodiazepine withdrawal, primarily in patients who have received excessive doses over a prolonged period, may result in numbness and tingling of extremities, hypersensitivity to light and noise, hallucinations, and epileptic seizures.
References (1)
- US Food and Drug Administration (2016) FDA warns about serious risks and death when combining opioid pain or cough medicines with benzodiazepines; requires its strongest warning. http://www.fda.gov/downloads/Drugs/DrugSafety/UCM518672.pdf
codeine brompheniramine
Applies to: brompheniramine / codeine / phenylpropanolamine and brompheniramine / codeine / phenylpropanolamine
MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.
MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (36)
- Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
- Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
- Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
- Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
- Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
- MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
- Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
- Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
- Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
- Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
- Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
- Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
- Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
- Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
- "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
- Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
- Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
- Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
- (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
- (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
- (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
- (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
- (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
- (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
- Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
- (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
- (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
- Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
- Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
- (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
- (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
- (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
- (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
PENTobarbital brompheniramine
Applies to: pentobarbital and brompheniramine / codeine / phenylpropanolamine
MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.
MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (36)
- Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
- Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
- Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
- Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
- Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
- MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
- Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
- Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
- Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
- Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
- Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
- Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
- Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
- Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
- "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
- Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
- Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
- Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
- (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
- (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
- (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
- (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
- (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
- (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
- Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
- (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
- (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
- Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
- Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
- (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
- (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
- (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
- (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
Drug and food/lifestyle interactions
codeine food/lifestyle
Applies to: brompheniramine / codeine / phenylpropanolamine
GENERALLY AVOID: Alcohol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur. In addition, alcohol may affect opioid release from sustained-release formulations.
GENERALLY AVOID: Grapefruit or grapefruit juice may increase the plasma concentrations of opioid analgesics by inhibiting CYP450 3A4-mediated metabolism of these agents, although the interaction has not been studied. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.
MANAGEMENT: Patients should not consume alcoholic beverages or use drug products that contain alcohol during treatment with opioid analgesics. Any history of alcohol or illicit drug use should be considered when prescribing an opioid analgesic, and therapy initiated at a lower dosage if necessary. Patients should be closely monitored for signs and symptoms of sedation, respiratory depression, and hypotension. Due to a high degree of interpatient variability with respect to grapefruit juice interactions, patients treated with opioid analgesics should preferably avoid the consumption of grapefruit and grapefruit juice.
References (18)
- (2017) "Product Information. Alfentanil Hydrochloride (alfentanil)." Akorn Inc
- (2024) "Product Information. TraMADol Hydrochloride (traMADol)." Advagen Pharma Ltd
- (2024) "Product Information. Jamp Tramadol (tramadol)." Jamp Pharma Corporation
- (2025) "Product Information. Tramadol (tramadol)." Sigma Pharmaceuticals Plc
- (2024) "Product Information. Tramedo (tRAMadol)." Alphapharm Pty Ltd
- (2022) "Product Information. Alfentanil (alfentanil)." Hameln Pharma Ltd
- (2024) "Product Information. Butorphanol Tartrate (butorphanol)." Apotex Corporation
- (2024) "Product Information. Codeine Sulfate (codeine)." Lannett Company Inc
- (2024) "Product Information. Meperidine Hydrochloride (meperidine)." Genus Lifesciences Inc.
- (2023) "Product Information. Dsuvia (SUFentanil)." AcelRx Pharmaceuticals
- (2024) "Product Information. Dzuveo (sufentanil)." Aguettant Ltd
- (2025) "Product Information. Pethidine (pethidine)." Martindale Pharmaceuticals Ltd
- (2023) "Product Information. Meperidine Hydrochloride (meperidine)." Sandoz Canada Incorporated
- (2024) "Product Information. Pethidine (Juno) (pethidine)." Juno Pharmaceuticals Pty Ltd
- Cherrier MM, Shen DD, Shireman L, et al. (2021) "Elevated customary alcohol consumption attenuates opioid effects." Pharmacol Biochem Behav, 4, p. 1-27
- Fuhr LM, Marok FZ, Fuhr U, Selzer D, Lehr T (2023) "Physiologically based pharmacokinetic modeling of bergamottin and 6,7-dihydroxybergamottin to describe CYP3A4 mediated grapefruit-drug interactions." Clin Pharmacol Ther, 114, p. 470-82
- (2025) "Product Information. TraMADol Hydrochloride ER (traMADol)." Trigen Laboratories Inc
- (2025) "Product Information. Codeine Contin (codeine)." Purdue Pharma
PENTobarbital food/lifestyle
Applies to: pentobarbital
GENERALLY AVOID: Concurrent acute use of barbiturates and ethanol may result in additive CNS effects, including impaired coordination, sedation, and death. Tolerance of these agents may occur with chronic use. The mechanism is related to inhibition of microsomal enzymes acutely and induction of hepatic microsomal enzymes chronically.
MANAGEMENT: The combination of ethanol and barbiturates should be avoided.
References (5)
- Gupta RC, Kofoed J (1966) "Toxological statistics for barbiturates, other sedatives, and tranquilizers in Ontario: a 10-year survey." Can Med Assoc J, 94, p. 863-5
- Misra PS, Lefevre A, Ishii H, Rubin E, Lieber CS (1971) "Increase of ethanol, meprobamate and pentobarbital metabolism after chronic ethanol administration in man and in rats." Am J Med, 51, p. 346-51
- Saario I, Linnoila M (1976) "Effect of subacute treatment with hypnotics, alone or in combination with alcohol, on psychomotor skills related to driving." Acta Pharmacol Toxicol (Copenh), 38, p. 382-92
- Stead AH, Moffat AC (1983) "Quantification of the interaction between barbiturates and alcohol and interpretation of fatal blood concentrations." Hum Toxicol, 2, p. 5-14
- Seixas FA (1979) "Drug/alcohol interactions: avert potential dangers." Geriatrics, 34, p. 89-102
phenylpropanolamine food/lifestyle
Applies to: brompheniramine / codeine / phenylpropanolamine
GENERALLY AVOID: Alcohol may potentiate the central nervous system and cardiovascular effects of centrally-acting appetite suppressants. In one study, concurrent administration of methamphetamine (30 mg intravenously) and ethanol (1 gm/kg orally over 30 minutes) increased heart rate by 24 beats/minute compared to methamphetamine alone. This increases cardiac work and myocardial oxygen consumption, which may lead to more adverse cardiovascular effects than either agent alone. Subjective effects of ethanol were diminished in the eight study subjects, but those of methamphetamine were not affected. The pharmacokinetics of methamphetamine were also unaffected except for a decrease in the apparent volume of distribution at steady state.
MANAGEMENT: Concomitant use of centrally-acting appetite suppressants and alcohol should be avoided if possible, especially in patients with a history of cardiovascular disease. Patients should be counselled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (3)
- Mendelson J, Jones RT, Upton R, Jacob P 3rd (1995) "Methamphetamine and ethanol interactions in humans." Clin Pharmacol Ther, 57, p. 559-68
- (2001) "Product Information. Didrex (benzphetamine)." Pharmacia and Upjohn
- (2012) "Product Information. Suprenza (phentermine)." Akrimax Pharmaceuticals
brompheniramine food/lifestyle
Applies to: brompheniramine / codeine / phenylpropanolamine
GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.
MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (4)
- Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
- Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
- (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
- (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
phenylpropanolamine food/lifestyle
Applies to: brompheniramine / codeine / phenylpropanolamine
MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.
MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.
References (7)
- Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
- Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
- (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
- (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
- (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
- (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
- (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
Disease interactions
PENTobarbital Acute Alcohol Intoxication
Applies to: Acute Alcohol Intoxication
The use of barbiturates is contraindicated in patients with acute alcohol intoxication exhibiting depressed vital signs. The central nervous system depressant effects of barbiturates may be additive with those of alcohol. Severe respiratory depression and death may occur. Therapy with barbiturates should be administered cautiously in patients who might be prone to acute alcohol intake.
codeine Acute Alcohol Intoxication
Applies to: Acute Alcohol Intoxication
The use of opiate agonists is contraindicated in patients with acute alcohol intoxication exhibiting depressed vital signs. The central nervous system depressant effects of opiate agonists may be additive with those of alcohol. Severe respiratory depression and death may occur. Therapy with opiate agonists should be administered cautiously in patients who might be prone to acute alcohol intake.
PENTobarbital Alcoholism
Applies to: Alcoholism
Barbiturates have the potential to cause dependence and abuse. Tolerance as well as physical and psychological dependence can develop, particularly after prolonged use of excessive dosages. Abrupt cessation and/or a reduction in dosage may precipitate withdrawal symptoms. In patients who have developed tolerance to a barbiturate, overdosage can still produce respiratory depression and death, and cross-tolerance usually will occur with other agents in the class. Addiction-prone individuals, such as those with a history of alcohol or substance abuse, should be under careful surveillance or medical supervision when treated with barbiturates. It may be prudent to refrain from dispensing large quantities of medication to these patients. After prolonged use or if dependency is suspected, withdrawal of barbiturates should be undertaken gradually using a dosage-tapering schedule.
codeine Alcoholism
Applies to: Alcoholism
Opiate agonists have the potential to cause dependence and abuse. Tolerance as well as physical and psychological dependence can develop after prolonged use. Abrupt cessation, reduction in dosage, or administration of an opiate antagonist such as naloxone may precipitate withdrawal symptoms. In patients who have developed tolerance to an opiate agonist, overdosage can still produce respiratory depression and death, and cross-tolerance usually will occur with other agents in the class. Addiction-prone individuals, such as those with a history of alcohol or substance abuse, should be under careful surveillance or medical supervision when treated with opiate agonists. It may be prudent to refrain from dispensing large quantities of medication to these patients. After prolonged use or if dependency is suspected, withdrawal of opiate therapy should be undertaken gradually using a dosage-tapering schedule.
codeine Altered Consciousness
Applies to: Altered Consciousness
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
PENTobarbital Altered Consciousness
Applies to: Altered Consciousness
Barbiturates should not be administered by injection to patients in shock or coma or who have recently received another respiratory depressant. The hypnotic and hypotensive effects of these agents may be prolonged and intensified in such patients.
codeine Asphyxia
Applies to: Asphyxia
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
PENTobarbital Asphyxia
Applies to: Asphyxia
Barbiturates may produce severe respiratory depression, apnea, laryngospasm, bronchospasm and cough, particularly during rapid intravenous administration. In usual hypnotic dosages, the degree of respiratory depression produced is similar to that which occurs during physiologic sleep, while at higher dosages, the rate, depth and volume of respiration may be markedly decreased. However, some patients may be susceptible at commonly used dosages, including the elderly, debilitated or severely ill patients, those receiving other CNS depressants, and those with limited ventilatory reserve, chronic pulmonary insufficiency or other respiratory disorders. Therapy with barbiturates should be administered cautiously in these patients. Appropriate monitoring and individualization of dosage are particularly important, and equipment for resuscitation should be immediately available if the parenteral route is used. Barbiturates, especially injectable formulations, should generally be avoided in patients with sleep apnea, hypoxia, or severe pulmonary diseases in which dyspnea or obstruction is evident.
codeine Brain/Intracranial Tumor
Applies to: Brain / Intracranial Tumor
The hypoventilation associated with administration of opiate agonists, particularly by the intravenous route, can induce cerebral hypoxia and vasodilatation with resultant increase in intracranial pressure. Opiate agonists should not be used in patients with suspected or known head injury or increased intracranial pressure. Also, clinicians treating such patients should be aware that opiate agonists may interfere with the evaluation of CNS function, especially with respect to consciousness levels, respiratory status, and pupillary changes.
codeine Brain/Intracranial Tumor
Applies to: Brain / Intracranial Tumor
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
phenylpropanolamine Cardiovascular Disease
Applies to: Cardiovascular Disease
Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.
codeine Cerebral Vascular Disorder
Applies to: Cerebral Vascular Disorder
The hypoventilation associated with administration of opiate agonists, particularly by the intravenous route, can induce cerebral hypoxia and vasodilatation with resultant increase in intracranial pressure. Opiate agonists should not be used in patients with suspected or known head injury or increased intracranial pressure. Also, clinicians treating such patients should be aware that opiate agonists may interfere with the evaluation of CNS function, especially with respect to consciousness levels, respiratory status, and pupillary changes.
codeine Cerebral Vascular Disorder
Applies to: Cerebral Vascular Disorder
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
phenylpropanolamine Cerebrovascular Insufficiency
Applies to: Cerebrovascular Insufficiency
Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.
codeine Constipation
Applies to: Constipation
Narcotic (opioid) analgesic agents increase smooth muscle tone in the gastrointestinal tract and decrease peristalsis, which can lead to elevated intraluminal pressure, spasm, and constipation following prolonged use. In patients with severe or acute inflammatory bowel disease, the decrease in colonic motility may induce toxic megacolon. Therapy with opioids should be administered cautiously in patients with gastrointestinal obstruction, constipation, inflammatory bowel disease, or recent gastrointestinal tract surgery. Gastrointestinal effects appear to be the most pronounced with morphine.
codeine Dehydration
Applies to: Dehydration
Opiate agonists can induce vasodilation and significant hypotension, particularly when given in high dosages and/or by rapid intravenous administration. Opiate analgesics cause vasodilatation that may exacerbate hypotension and hypoperfusion and, therefore, are contraindicated in circulatory shock. At therapeutic analgesic dosages, ambulatory patients are more likely to experience dizziness and hypotension than patients who are confined to bed. However, orthostatic hypotension may occur in supine patients upon rising. Therapy with opiate agonists should be administered cautiously and initiated at reduced dosages in patients with hypovolemia, or a predisposition to hypotension. When given by intramuscular or subcutaneous administration, clinicians should also be aware that impaired perfusion in these patients may prevent complete absorption of the drug. With repeated injections, an excessive amount may be absorbed suddenly if normal circulation is reestablished.
PENTobarbital Dermatitis - Drug-Induced
Applies to: Dermatitis - Drug-Induced
Skin eruptions may precede rare but potentially fatal barbiturate-induced reactions such as systemic lupus erythematosus and exfoliative dermatitis, the latter of which may be accompanied by hepatitis and jaundice. Therapy with barbiturates should be administered cautiously in patients with preexisting drug-induced dermatitis, since it may delay the recognition of a potential reaction to barbiturates. Barbiturate therapy should be withdrawn promptly at the first sign of a dermatologic adverse effect. However, cutaneous reactions may proceed to an irreversible stage even after cessation of medication due to the slow rate of metabolism and excretion of barbiturates. Patients should be advised to promptly report signs that may indicate impending development of barbiturate-related cutaneous lesions, including high fever, severe headache, stomatitis, conjunctivitis, rhinitis, urethritis, and balanitis. Rashes may be more likely to occur with phenobarbital and mephobarbital.
codeine Drug Abuse/Dependence
Applies to: Drug Abuse / Dependence
Opiate agonists have the potential to cause dependence and abuse. Tolerance as well as physical and psychological dependence can develop after prolonged use. Abrupt cessation, reduction in dosage, or administration of an opiate antagonist such as naloxone may precipitate withdrawal symptoms. In patients who have developed tolerance to an opiate agonist, overdosage can still produce respiratory depression and death, and cross-tolerance usually will occur with other agents in the class. Addiction-prone individuals, such as those with a history of alcohol or substance abuse, should be under careful surveillance or medical supervision when treated with opiate agonists. It may be prudent to refrain from dispensing large quantities of medication to these patients. After prolonged use or if dependency is suspected, withdrawal of opiate therapy should be undertaken gradually using a dosage-tapering schedule.
PENTobarbital Drug Abuse/Dependence
Applies to: Drug Abuse / Dependence
Barbiturates have the potential to cause dependence and abuse. Tolerance as well as physical and psychological dependence can develop, particularly after prolonged use of excessive dosages. Abrupt cessation and/or a reduction in dosage may precipitate withdrawal symptoms. In patients who have developed tolerance to a barbiturate, overdosage can still produce respiratory depression and death, and cross-tolerance usually will occur with other agents in the class. Addiction-prone individuals, such as those with a history of alcohol or substance abuse, should be under careful surveillance or medical supervision when treated with barbiturates. It may be prudent to refrain from dispensing large quantities of medication to these patients. After prolonged use or if dependency is suspected, withdrawal of barbiturates should be undertaken gradually using a dosage-tapering schedule.
codeine Gastrointestinal Obstruction
Applies to: Gastrointestinal Obstruction
Opioid analgesics are contraindicated in patients with known or suspected gastrointestinal obstruction, including paralytic ileus.
codeine Gastrointestinal Obstruction
Applies to: Gastrointestinal Obstruction
Narcotic (opioid) analgesic agents increase smooth muscle tone in the gastrointestinal tract and decrease peristalsis, which can lead to elevated intraluminal pressure, spasm, and constipation following prolonged use. In patients with severe or acute inflammatory bowel disease, the decrease in colonic motility may induce toxic megacolon. Therapy with opioids should be administered cautiously in patients with gastrointestinal obstruction, constipation, inflammatory bowel disease, or recent gastrointestinal tract surgery. Gastrointestinal effects appear to be the most pronounced with morphine.
codeine Head Injury
Applies to: Head Injury
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
codeine Head Injury
Applies to: Head Injury
The hypoventilation associated with administration of opiate agonists, particularly by the intravenous route, can induce cerebral hypoxia and vasodilatation with resultant increase in intracranial pressure. Opiate agonists should not be used in patients with suspected or known head injury or increased intracranial pressure. Also, clinicians treating such patients should be aware that opiate agonists may interfere with the evaluation of CNS function, especially with respect to consciousness levels, respiratory status, and pupillary changes.
PENTobarbital Heart Disease
Applies to: Heart Disease
The intravenous administration of barbiturates may produce severe cardiovascular reactions such as bradycardia, hypertension, or vasodilation with fall in blood pressure, particularly during rapid infusion. Parenteral therapy with barbiturates should be administered cautiously in patients with hypertension, hypotension, or cardiac disease. The intravenous administration of barbiturates should be reserved for emergency treatment of acute seizures or for anesthesia.
PENTobarbital Hypertension
Applies to: Hypertension
The intravenous administration of barbiturates may produce severe cardiovascular reactions such as bradycardia, hypertension, or vasodilation with fall in blood pressure, particularly during rapid infusion. Parenteral therapy with barbiturates should be administered cautiously in patients with hypertension, hypotension, or cardiac disease. The intravenous administration of barbiturates should be reserved for emergency treatment of acute seizures or for anesthesia.
phenylpropanolamine Hyperthyroidism
Applies to: Hyperthyroidism
Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.
PENTobarbital Hypotension
Applies to: Hypotension
The intravenous administration of barbiturates may produce severe cardiovascular reactions such as bradycardia, hypertension, or vasodilation with fall in blood pressure, particularly during rapid infusion. Parenteral therapy with barbiturates should be administered cautiously in patients with hypertension, hypotension, or cardiac disease. The intravenous administration of barbiturates should be reserved for emergency treatment of acute seizures or for anesthesia.
codeine Hypotension
Applies to: Hypotension
Opiate agonists can induce vasodilation and significant hypotension, particularly when given in high dosages and/or by rapid intravenous administration. Opiate analgesics cause vasodilatation that may exacerbate hypotension and hypoperfusion and, therefore, are contraindicated in circulatory shock. At therapeutic analgesic dosages, ambulatory patients are more likely to experience dizziness and hypotension than patients who are confined to bed. However, orthostatic hypotension may occur in supine patients upon rising. Therapy with opiate agonists should be administered cautiously and initiated at reduced dosages in patients with hypovolemia, or a predisposition to hypotension. When given by intramuscular or subcutaneous administration, clinicians should also be aware that impaired perfusion in these patients may prevent complete absorption of the drug. With repeated injections, an excessive amount may be absorbed suddenly if normal circulation is reestablished.
codeine Infectious Diarrhea/Enterocolitis/Gastroenteritis
Applies to: Infectious Diarrhea / Enterocolitis / Gastroenteritis
Narcotic (opioid) analgesic agents may prolong and/or worsen diarrhea associated with organisms that invade the intestinal mucosa, such as toxigenic Escherichia coli, Salmonella, Shigella, and pseudomembranous colitis due to broad-spectrum antibiotics. These agents decrease gastrointestinal motility, which may delay the excretion of infective gastroenteric organisms and/or their toxins. Other symptoms and complications such as fever, shedding of organisms, and extraintestinal illness may also be increased or prolonged. Therapy with opioids should be avoided or administered cautiously in patients with infectious diarrhea, particularly that due to pseudomembranous enterocolitis or enterotoxin-producing bacteria or if accompanied by high fever, pus, or blood in the stool.
codeine Inflammatory Bowel Disease
Applies to: Inflammatory Bowel Disease
Narcotic (opioid) analgesic agents increase smooth muscle tone in the gastrointestinal tract and decrease peristalsis, which can lead to elevated intraluminal pressure, spasm, and constipation following prolonged use. In patients with severe or acute inflammatory bowel disease, the decrease in colonic motility may induce toxic megacolon. Therapy with opioids should be administered cautiously in patients with gastrointestinal obstruction, constipation, inflammatory bowel disease, or recent gastrointestinal tract surgery. Gastrointestinal effects appear to be the most pronounced with morphine.
codeine Intestinal Anastomoses
Applies to: Intestinal Anastomoses
Narcotic (opioid) analgesic agents increase smooth muscle tone in the gastrointestinal tract and decrease peristalsis, which can lead to elevated intraluminal pressure, spasm, and constipation following prolonged use. In patients with severe or acute inflammatory bowel disease, the decrease in colonic motility may induce toxic megacolon. Therapy with opioids should be administered cautiously in patients with gastrointestinal obstruction, constipation, inflammatory bowel disease, or recent gastrointestinal tract surgery. Gastrointestinal effects appear to be the most pronounced with morphine.
PENTobarbital Liver Disease
Applies to: Liver Disease
Barbiturates are extensively metabolized by the liver. The plasma clearance of barbiturates may be decreased and the half-lives prolonged in patients with impaired hepatic function. Therapy with barbiturates should be administered cautiously and initiated at reduced dosages in patients with liver disease. Barbiturates are not recommended for use in patients with cirrhosis, hepatic failure, hepatic coma, or other severe hepatic impairment.
PENTobarbital Porphyria
Applies to: Porphyria
The use of barbiturates is contraindicated in patients with a history of porphyria. Barbiturates may exacerbate acute intermittent porphyria or porphyria variegata by inducing the enzymes responsible for porphyrin synthesis.
codeine Prematurity/Underweight in Infancy
Applies to: Prematurity / Underweight in Infancy
The use of narcotic (opioid) analgesic agents is contraindicated in premature infants. These agents may cross the immature blood-brain barrier to a greater extent than in adults, resulting in disproportionate respiratory depression.
codeine Pulmonary Impairment
Applies to: Pulmonary Impairment
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
PENTobarbital Pulmonary Impairment
Applies to: Pulmonary Impairment
Barbiturates may produce severe respiratory depression, apnea, laryngospasm, bronchospasm and cough, particularly during rapid intravenous administration. In usual hypnotic dosages, the degree of respiratory depression produced is similar to that which occurs during physiologic sleep, while at higher dosages, the rate, depth and volume of respiration may be markedly decreased. However, some patients may be susceptible at commonly used dosages, including the elderly, debilitated or severely ill patients, those receiving other CNS depressants, and those with limited ventilatory reserve, chronic pulmonary insufficiency or other respiratory disorders. Therapy with barbiturates should be administered cautiously in these patients. Appropriate monitoring and individualization of dosage are particularly important, and equipment for resuscitation should be immediately available if the parenteral route is used. Barbiturates, especially injectable formulations, should generally be avoided in patients with sleep apnea, hypoxia, or severe pulmonary diseases in which dyspnea or obstruction is evident.
PENTobarbital Respiratory Arrest
Applies to: Respiratory Arrest
Barbiturates may produce severe respiratory depression, apnea, laryngospasm, bronchospasm and cough, particularly during rapid intravenous administration. In usual hypnotic dosages, the degree of respiratory depression produced is similar to that which occurs during physiologic sleep, while at higher dosages, the rate, depth and volume of respiration may be markedly decreased. However, some patients may be susceptible at commonly used dosages, including the elderly, debilitated or severely ill patients, those receiving other CNS depressants, and those with limited ventilatory reserve, chronic pulmonary insufficiency or other respiratory disorders. Therapy with barbiturates should be administered cautiously in these patients. Appropriate monitoring and individualization of dosage are particularly important, and equipment for resuscitation should be immediately available if the parenteral route is used. Barbiturates, especially injectable formulations, should generally be avoided in patients with sleep apnea, hypoxia, or severe pulmonary diseases in which dyspnea or obstruction is evident.
codeine Respiratory Arrest
Applies to: Respiratory Arrest
Opiate agonists may produce significant central nervous system and respiratory depression of varying duration, particularly when given in high dosages and/or by rapid intravenous administration. Apnea may result from decreased respiratory drive as well as increased airway resistance, and rigidity of respiratory muscles may occur during rapid IV administration or when these agents are used in the induction of anesthesia. At therapeutic analgesic dosages, the respiratory effects are usually not clinically important except in patients with preexisting pulmonary impairment. Therapy with opiate agonists should be avoided or administered with extreme caution and initiated at reduced dosages in patients with severe CNS depression; sleep apnea; hypoxia, anoxia, or hypercapnia; upper airway obstruction; chronic pulmonary insufficiency; a limited ventilatory reserve; or other respiratory disorders. In the presence of excessive respiratory secretions, the use of opiate agonists may also be problematic because they decrease ciliary activity and reduce the cough reflex. Caution is also advised in patients who may be at increased risk for respiratory depression, such as comatose patients or those with head injury, intracranial lesions, or intracranial hypertension. Clinical monitoring of pulmonary function is recommended, and equipment for resuscitation should be immediately available if parenteral or neuraxial routes are used. Naloxone may be administered to reverse clinically significant respiratory depression, which may be prolonged depending on the opioid agent, cumulative dose, and route of administration.
PENTobarbital Shock
Applies to: Shock
Barbiturates should not be administered by injection to patients in shock or coma or who have recently received another respiratory depressant. The hypnotic and hypotensive effects of these agents may be prolonged and intensified in such patients.
codeine Shock
Applies to: Shock
Opiate agonists can induce vasodilation and significant hypotension, particularly when given in high dosages and/or by rapid intravenous administration. Opiate analgesics cause vasodilatation that may exacerbate hypotension and hypoperfusion and, therefore, are contraindicated in circulatory shock. At therapeutic analgesic dosages, ambulatory patients are more likely to experience dizziness and hypotension than patients who are confined to bed. However, orthostatic hypotension may occur in supine patients upon rising. Therapy with opiate agonists should be administered cautiously and initiated at reduced dosages in patients with hypovolemia, or a predisposition to hypotension. When given by intramuscular or subcutaneous administration, clinicians should also be aware that impaired perfusion in these patients may prevent complete absorption of the drug. With repeated injections, an excessive amount may be absorbed suddenly if normal circulation is reestablished.
PENTobarbital Adrenal Insufficiency
Applies to: Adrenal Insufficiency
Barbiturates, especially phenobarbital, secobarbital and butabarbital, may diminish the systemic effects of exogenous and endogenous corticosteroids via induction of hepatic microsomal enzymes, thereby accelerating the metabolism of corticosteroids. In addition, barbiturates may interfere with pituitary corticotropin production. Therapy with barbiturates should be administered cautiously in patients with adrenal insufficiency. Patients with borderline hypoadrenalism should be monitored closely, and patients receiving steroid supplementation may require an adjustment in dosage when barbiturates are added to or withdrawn from their medication regimen.
codeine Adrenal Insufficiency
Applies to: Adrenal Insufficiency
Patients with Addison's disease may have increased risk of respiratory depression and prolonged CNS depression associated with the use of narcotic (opioid) analgesic agents. Conversely, these agents may cause or potentiate adrenal insufficiency. Therapy with opioids should be administered cautiously and initiated at reduced dosages in patients with adrenocortical insufficiency. Subsequent doses should be titrated based on individual response rather than a fixed dosing schedule.
codeine Arrhythmias
Applies to: Arrhythmias
Opiate agonists have cholinergic activity. Large doses and/or rapid intravenous administration may produce bradycardia and arrhythmias via stimulation of medullary vagal nuclei. Therapy with opiate agonists should be administered cautiously in patients with a history of arrhythmias. Clinical monitoring of cardiovascular status is recommended during therapy.
brompheniramine Asthma
Applies to: Asthma
It has been suggested that the anticholinergic effect of antihistamines may reduce the volume and cause thickening of bronchial secretions, resulting in obstruction of respiratory tract. Some manufacturers and clinicians recommend that therapy with antihistamines be administered cautiously in patients with asthma or chronic obstructive pulmonary disease.
phenylpropanolamine Benign Prostatic Hyperplasia
Applies to: Benign Prostatic Hyperplasia
Sympathomimetic agents may cause or worsen urinary difficulty in patients with prostate enlargement due to smooth muscle contraction in the bladder neck via stimulation of alpha-1 adrenergic receptors. Therapy with sympathomimetic agents should be administered cautiously in patients with hypertrophy or neoplasm of the prostate.
codeine Biliary Obstruction
Applies to: Biliary Obstruction
Opioid agonists may cause spasm of the sphincter of Oddi, which may increase biliary tract pressure. Other opioid-induced effects may include a reduction in biliary and pancreatic secretions and transient elevations in serum amylase. Patients with biliary tract disease (including acute pancreatitis) should be regularly evaluated for worsening symptoms. Therapy with opioids should be administered cautiously in patients with biliary tract disease, gallbladder disease, or acute pancreatitis.
PENTobarbital Bone Marrow Depression/Low Blood Counts
Applies to: Bone Marrow Depression/Low Blood Counts
Hematologic toxicity, including agranulocytosis, thrombocytopenic purpura and megaloblastic anemia, has been reported rarely during use of barbiturates. Therapy with barbiturates should be administered cautiously in patients with preexisting blood dyscrasias or bone marrow suppression. Blood counts are recommended prior to and periodically during long-term therapy, and patients should be instructed to immediately report any signs or symptoms suggestive of blood dyscrasia such as fever, sore throat, local infection, easy bruising, petechiae, bleeding, pallor, dizziness, or jaundice. Barbiturate therapy should be discontinued if blood dyscrasias occur.
brompheniramine Cardiovascular Disease
Applies to: Cardiovascular Disease
Antihistamines may infrequently cause cardiovascular adverse effects related to their anticholinergic and local anesthetic (quinidine-like) activities. Tachycardia, palpitation, ECG changes, arrhythmias, hypotension, and hypertension have been reported. Although these effects are uncommon and usually limited to overdosage situations, the manufacturers and some clinicians recommend that therapy with antihistamines be administered cautiously in patients with cardiovascular disease, hypertension, and/or hyperthyroidism.
brompheniramine Chronic Obstructive Pulmonary Disease
Applies to: Chronic Obstructive Pulmonary Disease
It has been suggested that the anticholinergic effect of antihistamines may reduce the volume and cause thickening of bronchial secretions, resulting in obstruction of respiratory tract. Some manufacturers and clinicians recommend that therapy with antihistamines be administered cautiously in patients with asthma or chronic obstructive pulmonary disease.
PENTobarbital Depression
Applies to: Depression
Barbiturates depress the central nervous system and may cause or exacerbate mental depression. Therapy with barbiturates should be administered cautiously in patients with a history of depression or suicidal tendencies. It may be prudent to refrain from dispensing large quantities of medication to these patients.
phenylpropanolamine Diabetes Mellitus
Applies to: Diabetes Mellitus
Sympathomimetic agents may cause increases in blood glucose concentrations. These effects are usually transient and slight but may be significant with dosages higher than those normally recommended. Therapy with sympathomimetic agents should be administered cautiously in patients with diabetes mellitus. Closer monitoring of blood glucose concentrations may be appropriate.
codeine Gallbladder Disease
Applies to: Gallbladder Disease
Opioid agonists may cause spasm of the sphincter of Oddi, which may increase biliary tract pressure. Other opioid-induced effects may include a reduction in biliary and pancreatic secretions and transient elevations in serum amylase. Patients with biliary tract disease (including acute pancreatitis) should be regularly evaluated for worsening symptoms. Therapy with opioids should be administered cautiously in patients with biliary tract disease, gallbladder disease, or acute pancreatitis.
brompheniramine Gastrointestinal Obstruction
Applies to: Gastrointestinal Obstruction
Antihistamines often have anticholinergic activity, to which elderly patients are particularly sensitive. Therapy with antihistamines should be administered cautiously, if at all, in patients with preexisting conditions that are likely to be exacerbated by anticholinergic activity, such as urinary retention or obstruction; angle-closure glaucoma, untreated intraocular hypertension, or uncontrolled primary open-angle glaucoma; and gastrointestinal obstructive disorders. Conventional, first-generation antihistamines such as the ethanolamines (bromodiphenhydramine, carbinoxamine, clemastine, dimenhydrinate, diphenhydramine, doxylamine, phenyltoloxamine) tend to exhibit substantial anticholinergic effects. In contrast, the newer, relatively nonsedating antihistamines (e.g., cetirizine, fexofenadine, loratadine) reportedly have low to minimal anticholinergic activity at normally recommended dosages and may be appropriate alternatives.
phenylpropanolamine Glaucoma/Intraocular Hypertension
Applies to: Glaucoma / Intraocular Hypertension
Sympathomimetic agents can induce transient mydriasis via stimulation of alpha-1 adrenergic receptors. In patients with anatomically narrow angles or narrow-angle glaucoma, pupillary dilation can provoke an acute attack. In patients with other forms of glaucoma, mydriasis may occasionally increase intraocular pressure. Therapy with sympathomimetic agents should be administered cautiously in patients with or predisposed to glaucoma, particularly narrow-angle glaucoma.
brompheniramine Glaucoma/Intraocular Hypertension
Applies to: Glaucoma / Intraocular Hypertension
Antihistamines often have anticholinergic activity, to which elderly patients are particularly sensitive. Therapy with antihistamines should be administered cautiously, if at all, in patients with preexisting conditions that are likely to be exacerbated by anticholinergic activity, such as urinary retention or obstruction; angle-closure glaucoma, untreated intraocular hypertension, or uncontrolled primary open-angle glaucoma; and gastrointestinal obstructive disorders. Conventional, first-generation antihistamines such as the ethanolamines (bromodiphenhydramine, carbinoxamine, clemastine, dimenhydrinate, diphenhydramine, doxylamine, phenyltoloxamine) tend to exhibit substantial anticholinergic effects. In contrast, the newer, relatively nonsedating antihistamines (e.g., cetirizine, fexofenadine, loratadine) reportedly have low to minimal anticholinergic activity at normally recommended dosages and may be appropriate alternatives.
phenylpropanolamine History - Psychiatric Disorder
Applies to: History - Psychiatric Disorder
Phenylpropanolamine may precipitate or exacerbate psychotic symptoms, particularly at high dosages. Therapy with phenylpropanolamine should be administered cautiously in patients with a history of psychiatric disorders.
PENTobarbital Hyperkinetic Syndrome of Childhood
Applies to: Hyperkinetic Syndrome of Childhood
Paradoxical reactions characterized by excitability and restlessness may occur in pediatric patients with hyperactive aggressive disorders. Such patients should be monitored for signs of paradoxical stimulation during therapy with barbiturates.
brompheniramine Hyperthyroidism
Applies to: Hyperthyroidism
Antihistamines may infrequently cause cardiovascular adverse effects related to their anticholinergic and local anesthetic (quinidine-like) activities. Tachycardia, palpitation, ECG changes, arrhythmias, hypotension, and hypertension have been reported. Although these effects are uncommon and usually limited to overdosage situations, the manufacturers and some clinicians recommend that therapy with antihistamines be administered cautiously in patients with cardiovascular disease, hypertension, and/or hyperthyroidism.
brompheniramine Hypotension
Applies to: Hypotension
Antihistamines may infrequently cause cardiovascular adverse effects related to their anticholinergic and local anesthetic (quinidine-like) activities. Tachycardia, palpitation, ECG changes, arrhythmias, hypotension, and hypertension have been reported. Although these effects are uncommon and usually limited to overdosage situations, the manufacturers and some clinicians recommend that therapy with antihistamines be administered cautiously in patients with cardiovascular disease, hypertension, and/or hyperthyroidism.
brompheniramine Liver Disease
Applies to: Liver Disease
Limited pharmacokinetic data are available for the older, first-generation antihistamines. Many appear to be primarily metabolized by the liver, and both parent drugs and metabolites are excreted in the urine. Patients with renal and/or liver disease may be at greater risk for adverse effects from antihistamines due to drug and metabolite accumulation. Therapy with antihistamines should be administered cautiously in such patients. Lower initial dosages may be appropriate.
codeine Liver Disease
Applies to: Liver Disease
Narcotic (opioid) analgesic agents are extensively metabolized by the liver, and several of them (e.g., codeine, hydrocodone, meperidine, methadone, morphine, propoxyphene) have active metabolites that are further converted to inactive substances. The serum concentrations of these agents and their metabolites may be increased and the half-lives prolonged in patients with impaired hepatic function. Therapy with opioids should be administered cautiously and initiated at reduced dosages in patients with liver disease. Subsequent doses should be titrated based on individual response rather than a fixed dosing schedule.
codeine Pancreatitis
Applies to: Pancreatitis
Opioid agonists may cause spasm of the sphincter of Oddi, which may increase biliary tract pressure. Other opioid-induced effects may include a reduction in biliary and pancreatic secretions and transient elevations in serum amylase. Patients with biliary tract disease (including acute pancreatitis) should be regularly evaluated for worsening symptoms. Therapy with opioids should be administered cautiously in patients with biliary tract disease, gallbladder disease, or acute pancreatitis.
PENTobarbital Panhypopituitarism
Applies to: Panhypopituitarism
Barbiturates, especially phenobarbital, secobarbital and butabarbital, may diminish the systemic effects of exogenous and endogenous corticosteroids via induction of hepatic microsomal enzymes, thereby accelerating the metabolism of corticosteroids. In addition, barbiturates may interfere with pituitary corticotropin production. Therapy with barbiturates should be administered cautiously in patients with adrenal insufficiency. Patients with borderline hypoadrenalism should be monitored closely, and patients receiving steroid supplementation may require an adjustment in dosage when barbiturates are added to or withdrawn from their medication regimen.
phenylpropanolamine Prostate Tumor
Applies to: Prostate Tumor
Sympathomimetic agents may cause or worsen urinary difficulty in patients with prostate enlargement due to smooth muscle contraction in the bladder neck via stimulation of alpha-1 adrenergic receptors. Therapy with sympathomimetic agents should be administered cautiously in patients with hypertrophy or neoplasm of the prostate.
phenylpropanolamine Psychosis
Applies to: Psychosis
Phenylpropanolamine may precipitate or exacerbate psychotic symptoms, particularly at high dosages. Therapy with phenylpropanolamine should be administered cautiously in patients with a history of psychiatric disorders.
brompheniramine Renal Dysfunction
Applies to: Renal Dysfunction
Limited pharmacokinetic data are available for the older, first-generation antihistamines. Many appear to be primarily metabolized by the liver, and both parent drugs and metabolites are excreted in the urine. Patients with renal and/or liver disease may be at greater risk for adverse effects from antihistamines due to drug and metabolite accumulation. Therapy with antihistamines should be administered cautiously in such patients. Lower initial dosages may be appropriate.
codeine Renal Dysfunction
Applies to: Renal Dysfunction
Although narcotic (opioid) analgesic agents are generally metabolized by the liver, renal impairment can alter the elimination of these agents and their metabolites (some of which are pharmacologically active), resulting in drug accumulation and increased risk of toxicity. Therapy with opioids should be administered cautiously and initiated at reduced dosages in patients with significantly impaired renal function. Subsequent doses should be titrated based on individual response rather than a fixed dosing schedule.
codeine Seizures
Applies to: Seizures
Narcotic (opioid) analgesic agents may increase the frequency of seizures in patients with seizure disorders, may increase the risk of seizures occurring in other clinical settings associated with seizures, and, at higher dosages, have been reported to induce seizures in patients without history of seizures. Patients with history of seizure disorders should be regularly evaluated for worsened seizure control during therapy. Prolonged meperidine use may increase the risk of toxicity (e.g., seizures) from the accumulation of the active metabolite (normeperidine).
brompheniramine Urinary Retention
Applies to: Urinary Retention
Antihistamines often have anticholinergic activity, to which elderly patients are particularly sensitive. Therapy with antihistamines should be administered cautiously, if at all, in patients with preexisting conditions that are likely to be exacerbated by anticholinergic activity, such as urinary retention or obstruction; angle-closure glaucoma, untreated intraocular hypertension, or uncontrolled primary open-angle glaucoma; and gastrointestinal obstructive disorders. Conventional, first-generation antihistamines such as the ethanolamines (bromodiphenhydramine, carbinoxamine, clemastine, dimenhydrinate, diphenhydramine, doxylamine, phenyltoloxamine) tend to exhibit substantial anticholinergic effects. In contrast, the newer, relatively nonsedating antihistamines (e.g., cetirizine, fexofenadine, loratadine) reportedly have low to minimal anticholinergic activity at normally recommended dosages and may be appropriate alternatives.
codeine Urinary Retention
Applies to: Urinary Retention
Narcotic (opioid) analgesic agents may inhibit the urinary voiding reflex and increase the tone of the vesical sphincter in the bladder. Acute urinary retention requiring catheterization may occur, particularly in patients with prostatic hypertrophy or urethral stricture and in older adult patients. These agents may also decrease urine production via direct effects on the kidney and central stimulation of the release of vasopressin. Therapy with opioids should be administered cautiously in patients with or predisposed to urinary retention and/or oliguria. The effects on smooth muscle tone appear to be the most pronounced with morphine.
PENTobarbital Vitamin D Deficiency
Applies to: Vitamin D Deficiency
Rickets and osteomalacia have rarely been reported following prolonged use of barbiturates, possibly due to increased metabolism of vitamin D as a result of enzyme induction by barbiturates. Long-term therapy with barbiturates should be administered cautiously in patients with vitamin D deficiency.
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
| Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
| Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
| Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
| No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.