Skip to main content

Drug Interactions between bromocriptine and Cardizem CD

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

dilTIAZem bromocriptine

Applies to: Cardizem CD (diltiazem) and bromocriptine

ADJUST DOSE: Coadministration with moderate inhibitors of CYP450 3A4 may significantly increase the plasma concentrations of bromocriptine. Orally administered bromocriptine is extensively metabolized in the gastrointestinal tract and liver by CYP450 3A4, with approximately 93% of the absorbed dose undergoing first-pass metabolism and only the remaining 7% reaching systemic circulation. As such, inhibitors of CYP450 3A4 may markedly reduce the metabolic clearance of bromocriptine. The interaction has been studied with erythromycin, a moderate CYP450 3A4 inhibitor. When a single 5 mg oral dose of bromocriptine was given following a 4-day treatment of erythromycin estolate 250 mg four times a day in five male volunteers, mean bromocriptine peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 4.6- and 3.7-fold, respectively, compared to administration of bromocriptine alone. High bromocriptine plasma levels may increase the frequency and/or severity of adverse effects such as nausea, headache, dizziness, somnolence (e.g., episodes of sudden sleep onset), hypotension, syncope, and impulse control problems or compulsive behaviors (e.g., gambling or sexual urges; uncontrolled spending).

MANAGEMENT: Caution and close monitoring for development of adverse effects are advisable during coadministration of bromocriptine with moderate CYP450 3A4 inhibitors. Bromocriptine dosage may need to be reduced to avoid toxicity. The prescribing information for Cycloset, a bromocriptine product indicated for use in adults with type 2 diabetes mellitus to improve glycemic control, recommends limiting the dose to 1.6 mg daily during concomitant use of a moderate CYP450 3A4 inhibitor.

References

  1. Nelson MV, Berchou RC, Kareti D, Le Witt PA (1990) "Pharmacokinetic evaluation of erythromycin and caffeine administered with bromocriptine." Clin Pharmacol Ther, 47, p. 694-7
  2. (2001) "Product Information. Parlodel (bromocriptine)." Sandoz Pharmaceuticals Corporation
  3. von Rosenstiel NA, Adam D (1995) "Macrolide antibacterials. Drug interactions of clinical significance." Drug Saf, 13, p. 105-22
  4. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  5. Cerner Multum, Inc. "Australian Product Information."
  6. Periti P, Mazzei T, Mini E, Novelli A (1992) "Pharmacokinetic drug interactions of macrolides." Clin Pharmacokinet, 23, p. 106-31
  7. (2018) "Product Information. Cycloset (bromocriptine)." Valeant Pharmaceuticals
View all 7 references

Switch to consumer interaction data

Drug and food interactions

Moderate

dilTIAZem food

Applies to: Cardizem CD (diltiazem)

MONITOR: Like many CNS-active agents, alcohol can exhibit hypotensive effects. Coadministration with antihypertensive agents including diltiazem may result in additive effects on blood pressure and orthostasis.

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered diltiazem in some patients. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. In a study of ten healthy male volunteers, administration of a single 120 mg oral dose of immediate-release diltiazem in combination with 250 mL of grapefruit juice increased the diltiazem peak plasma concentration (Cmax) and systemic exposure (AUC) by an average of 22% and 20%, respectively, compared to administration with water. The time to reach Cmax (Tmax) and the terminal half-life were not affected, and no statistically significant differences in blood pressure and heart rate were observed during administration with grapefruit juice relative to water. In a different study, repeated administration of 200 mL of grapefruit juice at 0, 2, 4, 8 and 12 hours had no significant effect on the Cmax or AUC of a single 120 mg oral dose of diltiazem, but increased its half-life from 4.1 to 5.1 hours. The ratios for the N-demethyl and deacetyl metabolites to diltiazem were also not affected by grapefruit juice. However, because pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability, the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients should be advised that alcohol may potentiate the hypotensive effects of diltiazem, especially during the initiation of therapy and following a dosage increase. Caution should be exercised when rising from a sitting or recumbent position, and patients should notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients who regularly consume grapefruit or grapefruit juice should be monitored for increased adverse effects of diltiazem such as such as headache, irregular heartbeat, edema, unexplained weight gain, and chest pain. Grapefruit and grapefruit juice should be avoided if an interaction is suspected.

References

  1. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  2. Sigusch H, Henschel L, Kraul H, Merkel U, Hoffmann A (1994) "Lack of effect of grapefruit juice on diltiazem bioavailability in normal subjects." Pharmazie, 49, p. 675-9
  3. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  4. Christensen H, Asberg A, Holmboe AB, Berg KJ (2002) "Coadministration of grapefruit juice increases systemic exposure of diltiazem in healthy volunteers." Eur J Clin Pharmacol, 58, p. 515-520
  5. Cerner Multum, Inc. "UK Summary of Product Characteristics."
View all 5 references

Switch to consumer interaction data

Moderate

bromocriptine food

Applies to: bromocriptine

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 4 references

Switch to consumer interaction data

Moderate

dilTIAZem food

Applies to: Cardizem CD (diltiazem)

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
  2. Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
  3. Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
  6. Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
  7. Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
  10. Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
  12. McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
  13. Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
View all 14 references

Switch to consumer interaction data

Moderate

bromocriptine food

Applies to: bromocriptine

MONITOR: Nicotine may cause vasoconstriction in some patients and potentiate the ischemic response to ergot alkaloids.

MANAGEMENT: Caution may be advisable when ergot alkaloids are used in combination with nicotine products. Patients should be advised to seek immediate medical attention if they experience potential symptoms of ischemia such as coldness, pallor, cyanosis, numbness, tingling, or pain in the extremities; muscle weakness; severe or worsening headache; visual disturbances; severe abdominal pain; chest pain; and shortness of breath.

References

  1. (2001) "Product Information. Migranal (dihydroergotamine nasal)." Novartis Pharmaceuticals
  2. (2004) "Product Information. Cafergot (caffeine-ergotamine)." Novartis Pharmaceuticals
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  4. Cerner Multum, Inc. "Australian Product Information."
View all 4 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.