Skip to main content

Drug Interactions between Avelox and ozanimod

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

moxifloxacin ozanimod

Applies to: Avelox (moxifloxacin) and ozanimod

GENERALLY AVOID: Certain quinolones, including gatifloxacin and moxifloxacin, may cause dose-related prolongation of the QT interval in some patients. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. During postmarketing surveillance, rare cases of torsade de pointes have been reported in patients taking gatifloxacin. These cases primarily involved patients with underlying medical conditions for which they were receiving concomitant medications known to prolong the QTc interval. Rare cases of tachycardia have been reported with moxifloxacin. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Coadministration of gatifloxacin or moxifloxacin with other drugs that can prolong the QT interval should generally be avoided. Caution and clinical monitoring are recommended if concomitant use is required. Since the magnitude of QTc prolongation increases with increasing plasma concentrations of the quinolone, recommended dosages and intravenous infusion rates should not be exceeded. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References (26)
  1. (2001) "Product Information. Avelox (moxifloxacin)." Bayer
  2. (2001) "Product Information. Tequin (gatifloxacin)." Bristol-Myers Squibb
  3. Siepmann M, Kirch W (2001) "Drug points - Tachycardia associated with moxifloxacin." Br Med J, 322, p. 23
  4. Owens RC (2001) "Risk assessment for antimicrobial agent-induced QTc interval prolongation and torsades de pointes." Pharmacotherapy, 21, p. 301-19
  5. Iannini PB, Circiumaru I (2001) "Gatifloxacin-induced QTc prolongation and ventricular tachycardia." Pharmacotherapy, 21, p. 361-2
  6. Demolis JL, Kubitza D, Tenneze L, Funck-Bretano C (2000) "Effect of a single oral dose of moxifloxacin (400 mg and 800 mg) on ventricular repolarization in healthy subjects." Clin Pharmacol Ther, 68, p. 658-66
  7. Iannini PB, Doddamani S, Byazrova E, Curciumaru I, Kramer H (2001) "Risk of torsades de pointes with non-cardiac drugs." BMJ, 322, p. 46-7
  8. Ball P (2000) "Quinolone-induced QT interval prolongation: a not-so-unexpected class effect." J Antimicrob Chemother, 45, p. 557-9
  9. Kang J, Wang L, Chen XL, Triggle DJ, Rampe D (2001) "Interactions of a series of fluoroquinolone antibacterial drugs with the human cardiac K+ channel HERG." Mol Pharmacol, 59, p. 122-6
  10. White CM, Grant EM, Quintiliani R (2001) "Moxifloxacin does increase the corrected QT interval." Clin Infect Dis, 33, p. 1441-2
  11. Frothingham R (2001) "Rates of torsades de pointes associated with ciprofloxacin, ofloxacin, levofloxacin, gatifloxacin, and moxifloxacin." Pharmacotherapy, 21, p. 1468-72
  12. Bertino JS Jr, Owens RC Jr, Carnes TD, Iannini PB (2002) "Gatifloxacin-associated corrected QT interval prolongation, torsades de pointes, and ventricular fibrillation in patients with known risk factors." Clin Infect Dis, 34, p. 861-3
  13. Oliphant CM, Green GM (2002) "Quinolones: a comprehensive review." Am Fam Physician, 65, p. 455-64
  14. Owens RC Jr, Ambrose PG (2002) "Torsades de pointes associated with fluoroquinolones." Pharmacotherapy, 22, 663-8; discussion 668-72
  15. Noel GJ, Natarajan J, Chien S, Hunt TL, Goodman DB, Abels R (2003) "Effects of three fluoroquinolones on QT interval in healthy adults after single doses." Clin Pharmacol Ther, 73, p. 292-303
  16. Ansari SR, Chopra N (2004) "Gatifloxacin and Prolonged QT Interval." Am J Med Sci, 327, p. 55-6
  17. Iannini PB (2002) "Cardiotoxicity of macrolides, ketolides and fluoroquinolones that prolong the QTc interval." Expert Opin Drug Saf, 1, p. 121-8
  18. Owens RC (2004) "QT Prolongation with Antimicrobial Agents : Understanding the Significance." Drugs, 64, p. 1091-124
  19. Katritsis D, Camm AJ (2003) "Quinolones: cardioprotective or cardiotoxic." Pacing Clin Electrophysiol, 26, p. 2317-20
  20. Stahlmann R (2002) "Clinical toxicological aspects of fluoroquinolones." Toxicol Lett, 127, p. 269-77
  21. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  22. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  23. Dale KM, Lertsburapa K, Kluger J, White CM (2007) "Moxifloxacin and torsade de pointes." Ann Pharmacother, 41, p. 336-40
  24. Falagas ME, Rafailidis PI, Rosmarakis ES (2007) "Arrhythmias associated with fluoroquinolone therapy." Int J Antimicrob Agents, 29, p. 374-9
  25. Tsikouris JP, Peeters MJ, Cox CD, Meyerrose GE, Seifert CF (2006) "Effects of three fluoroquinolones on QT analysis after standard treatment courses." Ann Noninvasive Electrocardiol, 11, p. 52-6
  26. Cerner Multum, Inc. "Australian Product Information."

Drug and food interactions

Moderate

ozanimod food

Applies to: ozanimod

GENERALLY AVOID: Foods that contain large amounts of tyramine may precipitate a hypertensive crisis in patients treated with ozanimod. The proposed mechanism involves potentiation of the tyramine pressor effect due to inhibition of monoamine oxidase (MAO) by the major active metabolites of ozanimod, CC112273 and CC1084037. Monoamine oxidase in the gastrointestinal tract and liver, primarily type A (MAO-A), is the enzyme responsible for metabolizing exogenous amines such as tyramine and preventing them from being absorbed intact. Once absorbed, tyramine is metabolized to octopamine, a substance that is believed to displace norepinephrine from storage granules causing a rise in blood pressure. In vitro, CC112273 and CC1084037 inhibited MAO-B (IC50 values of 5.72 nM and 58 nM, respectively) with more than 1000-fold selectivity over MAO-A (IC50 values >10000 nM). Because of this selectivity, as well as the fact that free plasma concentrations of CC112273 and CC1084037 are less than 8% of the in vitro IC50 values for MAO-B inhibition, ozanimod is expected to have a much lower propensity to cause hypertensive crises than nonselective MAO inhibitors. However, rare cases of hypertensive crisis have occurred during clinical trials for the treatment of multiple sclerosis (MS) and ulcerative colitis (UC) and in postmarketing use. In controlled clinical trials, hypertension and blood pressure increases were reported more frequently in patients treated with ozanimod (up to 4.6% in MS patients receiving ozanimod 0.92 mg/day) than in patients treated with interferon beta-1a (MS) or placebo (UC).

Administration of ozanimod with either a high-fat, high-calorie meal (1000 calories; 50% fat) or a low-fat, low-calorie meal (300 calories; 10% fat) had no effects on ozanimod peak plasma concentration (Cmax) and systemic exposure (AUC) compared to administration under fasted conditions.

MANAGEMENT: Dietary restriction is not ordinarily required during ozanimod treatment with respect to most foods and beverages that contain tyramine, which usually include aged, fermented, cured, smoked, or pickled foods (e.g., air-dried and fermented meats or fish, aged cheeses, most soybean products, yeast extracts, red wine, beer, sauerkraut). However, certain foods like some of the aged cheeses (e.g., Boursault, Liederkrantz, Mycella, Stilton) and pickled herring may contain very high amounts of tyramine and could potentially cause a hypertensive reaction in patients taking ozanimod, even at recommended dosages, due to increased sensitivity to tyramine. Patients should be advised to avoid the intake of very high levels of tyramine (e.g., greater than 150 mg) and to promptly seek medical attention if they experience potential signs and symptoms of a hypertensive crisis such as severe headache, visual disturbances, confusion, stupor, seizures, chest pain, unexplained nausea or vomiting, and stroke-like symptoms. Blood pressure should be regularly monitored and managed accordingly. Because of the long elimination half-lives of the major active metabolites, these precautions may need to be observed for up to 3 months following the last ozanimod dose. Ozanimod can be administered with or without food.

References (5)
  1. (2022) "Product Information. Zeposia (ozanimod)." Celgene Pty Ltd
  2. (2023) "Product Information. Zeposia (ozanimod)." Bristol-Myers Squibb
  3. (2023) "Product Information. Zeposia (ozanimod)." Bristol-Myers Squibb Canada Inc
  4. (2023) "Product Information. Zeposia (ozanimod)." Bristol-Myers Squibb Pharmaceuticals Ltd
  5. Choi DK, Rubin DT, Puangampai A, Cleveland N (2022) "Hypertensive emergency after initiating ozanimod: a case report." Inflamm Bowel Dis, 28, e114-5

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.