Drug Interactions between amoxicillin / clarithromycin / lansoprazole and toremifene
This report displays the potential drug interactions for the following 2 drugs:
- amoxicillin/clarithromycin/lansoprazole
- toremifene
Interactions between your drugs
clarithromycin toremifene
Applies to: amoxicillin / clarithromycin / lansoprazole and toremifene
GENERALLY AVOID: Coadministration with potent inhibitors of CYP450 3A4 may significantly increase the plasma concentrations of toremifene, which is primarily metabolized by the isoenzyme. In 18 healthy subjects, administration of toremifene (80 mg once daily) in combination with the potent CYP450 3A4 inhibitor ketoconazole (200 mg twice daily) increased the toremifene peak plasma concentration (Cmax) by 1.4-fold and systemic exposure (AUC) by 2.9-fold compared to administration alone. The Cmax and AUC of the weakly active metabolite, N-demethyltoremifene, were reduced by 56% and 20%, respectively. Because toremifene is associated with dose- and concentration-dependent prolongation of the QT interval, increased levels may potentiate the risk of ventricular arrhythmias such as torsade de pointes and sudden death.
MANAGEMENT: The use of toremifene in combination with potent CYP450 3A4 inhibitors such as itraconazole, ketoconazole, voriconazole, nefazodone, delavirdine, protease inhibitors, and ketolide and certain macrolide antibiotics should generally be avoided. If treatment with one of these agents is required, interruption of toremifene therapy should be considered. Otherwise, patients who require concomitant treatment should be closely monitored. In patients at increased risk, electrocardiograms (ECGs) should be obtained at baseline and as clinically indicated. Complete blood counts, electrolyte levels (calcium, magnesium, potassium), and liver function tests should also be obtained periodically. Patients should be advised to contact their physician if they experience vaginal bleeding or potential signs of blood clots such as chest pain, shortness of breath, sudden loss of vision, and pain, redness or swelling in an extremity. Patients should seek immediate medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, palpitations, or syncope.
References (1)
- (2001) "Product Information. Fareston (toremifene)." Schering Corporation
clarithromycin lansoprazole
Applies to: amoxicillin / clarithromycin / lansoprazole and amoxicillin / clarithromycin / lansoprazole
MONITOR: Coadministration with clarithromycin may increase the plasma concentrations of lansoprazole. The proposed mechanism is clarithromycin inhibition of intestinal (first-pass) and hepatic metabolism of lansoprazole via CYP450 3A4. Although lansoprazole is primarily metabolized by CYP450 2C19 in the liver, 3A4-mediated metabolism is the predominant pathway in individuals who are 2C19-deficient (approximately 3% to 5% of the Caucasian and 17% to 20% of the Asian population). Additionally, inhibition of P-glycoprotein intestinal efflux transporter by clarithromycin may also contribute to the interaction, resulting in increased bioavailability of lansoprazole. In 18 healthy volunteers--six each of homozygous extensive metabolizers (EMs), heterozygous EMs, and poor metabolizers (PMs) of CYP450 2C19--clarithromycin (400 mg orally twice a day for 6 days) increased the peak plasma concentration (Cmax) of a single 60 mg oral dose of lansoprazole by 1.47, 1.71- and 1.52-fold, respectively, and area under the concentration-time curve (AUC) by 1.55-, 1.74- and 1.80-fold, respectively, in each of these groups compared to placebo. The AUC ratio of lansoprazole to lansoprazole sulphone, which is considered an index of CYP450 3A4 activity, was significantly increased by clarithromycin in all three groups. However, elimination half-life of lansoprazole was prolonged by 1.54-fold only in PMs. Mild diarrhea was reported in two subjects and mild abdominal disturbance in six subjects during clarithromycin coadministration. These side effects continued until day 6 and ameliorated the day after discontinuation of clarithromycin, whereas no adverse events were reported during placebo administration or after lansoprazole plus placebo. In another study, clarithromycin induced dose-dependent increases in the plasma concentration of lansoprazole in a group of 20 patients receiving treatment for H. pylori eradication. Mean 3-hour plasma lansoprazole concentration was 385 ng/mL for the control subjects who received lansoprazole 30 mg and amoxicillin 750 mg twice a day for 7 days; 696 ng/mL for patients coadministered clarithromycin 200 mg twice a day; and 947 ng/mL for patients coadministered clarithromycin 400 mg twice a day.
MANAGEMENT: Although lansoprazole is generally well tolerated, caution may be advised during coadministration with clarithromycin, particularly if higher dosages of one or both drugs are used. Dosage adjustment may be necessary in patients who experience excessive adverse effects of lansoprazole.
References (3)
- Ushiama H, Echizen H, Nachi S, Ohnishi A (2002) "Dose-dependent inhibition of CYP3A activity by clarithromycin during Helicobacter pylori eradication therapy assessed by changes in plasma lansoprazole levels and partial cortisol clearance to 6beta-hydroxycortisol." Clin Pharmacol Ther, 72, p. 33-43
- Saito M, Yasui-Furukori N, Uno T, et al. (2005) "Effects of clarithromycin on lansoprazole pharmacokinetics between CYP2C19 genotypes." Br J Clin Pharmacol, 59, p. 302-9
- Miura M, Tada H, Yasui-Furukori N, et al. (2005) "Effect of clarithromycin on the enantioselective disposition of lansoprazole in relation to CYP2C19 genotypes." Chirality, 17, p. 338-344
amoxicillin clarithromycin
Applies to: amoxicillin / clarithromycin / lansoprazole and amoxicillin / clarithromycin / lansoprazole
Although some in vitro data indicate synergism between macrolide antibiotics and penicillins, other in vitro data indicate antagonism. When these drugs are given together, neither has predictable therapeutic efficacy. Data are available for erythromycin, although theoretically this interaction could occur with any macrolide. Except for monitoring of the effectiveness of antibiotic therapy, no special precautions appear to be necessary.
References (3)
- Strom J (1961) "Penicillin and erythromycin singly and in combination in scarlatina therapy and the interference between them." Antibiot Chemother, 11, p. 694-7
- Cohn JR, Jungkind DL, Baker JS (1980) "In vitro antagonism by erythromycin of the bactericidal action of antimicrobial agents against common respiratory pathogens." Antimicrob Agents Chemother, 18, p. 872-6
- Penn RL, Ward TT, Steigbigel RT (1982) "Effects of erythromycin in combination with penicillin, ampicillin, or gentamicin on the growth of listeria monocytogenes." Antimicrob Agents Chemother, 22, p. 289-94
Drug and food interactions
toremifene food
Applies to: toremifene
GENERALLY AVOID: Coadministration with grapefruit juice may theoretically increase the plasma concentrations of toremifene. The proposed mechanism is inhibition of CYP450 3A4-mediated metabolism by certain compounds present in grapefruit. Because toremifene is associated with dose- and concentration-dependent prolongation of the QT interval, increased levels may potentiate the risk of ventricular arrhythmias such as torsade de pointes and sudden death.
GENERALLY AVOID: Due to their estrogenic effect, isoflavones present in soy such as genistein and daidzein may stimulate breast tumor growth and antagonize the antiproliferative action of toremifene. Supportive data are derived primarily from in vitro and animal studies. In vitro, low concentrations of these phytoestrogens have been found to promote DNA synthesis and reverse the inhibitory effect of tamoxifen on oestrogen-dependent breast cancer cell proliferation. In contrast, high concentrations of genistein greater than 10 microM/L have been found to enhance tamoxifen effects by inhibiting breast cancer cell growth. It is not known if these high concentrations are normally achieved in humans. Plasma concentrations below 4 microM/L have been observed in healthy volunteers given a soy diet for one month or large single doses of genistein. These concentrations are comparable to the low plasma concentrations associated with tumor stimulation reported in animals. In a study of 155 female breast cancer survivors with substantially bothersome hot flashes, a product containing 50 mg of soy isoflavones (40% to 45% genistein; 40% to 45% daidzein; 10% to 20% glycitein) taken three times a day was found to be no more effective than placebo in reducing hot flashes. No toxicity or recurrence of breast cancer was reported during the 9-week study period.
MANAGEMENT: Until more information is available, patients treated with toremifene should consider avoiding the consumption of grapefruit juice and soy-containing products. Patients should be advised to contact their physician if they experience vaginal bleeding or potential signs of blood clots such as chest pain, shortness of breath, sudden loss of vision, and pain, redness or swelling in an extremity. Patients should seek immediate medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, palpitations, or syncope.
References (2)
- (2001) "Product Information. Fareston (toremifene)." Schering Corporation
- Therapeutic Research Faculty (2008) Natural Medicines Comprehensive Database. http://www.naturaldatabase.com
clarithromycin food
Applies to: amoxicillin / clarithromycin / lansoprazole
Grapefruit juice may delay the gastrointestinal absorption of clarithromycin but does not appear to affect the overall extent of absorption or inhibit the metabolism of clarithromycin. The mechanism of interaction is unknown but may be related to competition for intestinal CYP450 3A4 and/or absorptive sites. In an open-label, randomized, crossover study consisting of 12 healthy subjects, coadministration with grapefruit juice increased the time to reach peak plasma concentration (Tmax) of both clarithromycin and 14-hydroxyclarithromycin (the active metabolite) by 80% and 104%, respectively, compared to water. Other pharmacokinetic parameters were not significantly altered. This interaction is unlikely to be of clinical significance.
References (1)
- Cheng KL, Nafziger AN, Peloquin CA, Amsden GW (1998) "Effect of grapefruit juice on clarithromycin pharmacokinetics." Antimicrob Agents Chemother, 42, p. 927-9
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.