Drug Interactions between amoxicillin / clarithromycin / lansoprazole and tipranavir
This report displays the potential drug interactions for the following 2 drugs:
- amoxicillin/clarithromycin/lansoprazole
- tipranavir
Interactions between your drugs
clarithromycin lansoprazole
Applies to: amoxicillin / clarithromycin / lansoprazole and amoxicillin / clarithromycin / lansoprazole
MONITOR: Coadministration with clarithromycin may increase the plasma concentrations of lansoprazole. The proposed mechanism is clarithromycin inhibition of intestinal (first-pass) and hepatic metabolism of lansoprazole via CYP450 3A4. Although lansoprazole is primarily metabolized by CYP450 2C19 in the liver, 3A4-mediated metabolism is the predominant pathway in individuals who are 2C19-deficient (approximately 3% to 5% of the Caucasian and 17% to 20% of the Asian population). Additionally, inhibition of P-glycoprotein intestinal efflux transporter by clarithromycin may also contribute to the interaction, resulting in increased bioavailability of lansoprazole. In 18 healthy volunteers--six each of homozygous extensive metabolizers (EMs), heterozygous EMs, and poor metabolizers (PMs) of CYP450 2C19--clarithromycin (400 mg orally twice a day for 6 days) increased the peak plasma concentration (Cmax) of a single 60 mg oral dose of lansoprazole by 1.47, 1.71- and 1.52-fold, respectively, and area under the concentration-time curve (AUC) by 1.55-, 1.74- and 1.80-fold, respectively, in each of these groups compared to placebo. The AUC ratio of lansoprazole to lansoprazole sulphone, which is considered an index of CYP450 3A4 activity, was significantly increased by clarithromycin in all three groups. However, elimination half-life of lansoprazole was prolonged by 1.54-fold only in PMs. Mild diarrhea was reported in two subjects and mild abdominal disturbance in six subjects during clarithromycin coadministration. These side effects continued until day 6 and ameliorated the day after discontinuation of clarithromycin, whereas no adverse events were reported during placebo administration or after lansoprazole plus placebo. In another study, clarithromycin induced dose-dependent increases in the plasma concentration of lansoprazole in a group of 20 patients receiving treatment for H. pylori eradication. Mean 3-hour plasma lansoprazole concentration was 385 ng/mL for the control subjects who received lansoprazole 30 mg and amoxicillin 750 mg twice a day for 7 days; 696 ng/mL for patients coadministered clarithromycin 200 mg twice a day; and 947 ng/mL for patients coadministered clarithromycin 400 mg twice a day.
MANAGEMENT: Although lansoprazole is generally well tolerated, caution may be advised during coadministration with clarithromycin, particularly if higher dosages of one or both drugs are used. Dosage adjustment may be necessary in patients who experience excessive adverse effects of lansoprazole.
References (3)
- Ushiama H, Echizen H, Nachi S, Ohnishi A (2002) "Dose-dependent inhibition of CYP3A activity by clarithromycin during Helicobacter pylori eradication therapy assessed by changes in plasma lansoprazole levels and partial cortisol clearance to 6beta-hydroxycortisol." Clin Pharmacol Ther, 72, p. 33-43
- Saito M, Yasui-Furukori N, Uno T, et al. (2005) "Effects of clarithromycin on lansoprazole pharmacokinetics between CYP2C19 genotypes." Br J Clin Pharmacol, 59, p. 302-9
- Miura M, Tada H, Yasui-Furukori N, et al. (2005) "Effect of clarithromycin on the enantioselective disposition of lansoprazole in relation to CYP2C19 genotypes." Chirality, 17, p. 338-344
clarithromycin tipranavir
Applies to: amoxicillin / clarithromycin / lansoprazole and tipranavir
ADJUST DOSE: Coadministration of clarithromycin with tipranavir and low-dose ritonavir may result in increased plasma concentrations of both clarithromycin and tipranavir. The proposed mechanism is competitive inhibition of CYP450 3A4, the isoenzyme responsible for the metabolic clearance of all three drugs. In 24 study subjects, clarithromycin (500 mg twice a day for 12 days) increased the mean peak plasma concentration (Cmax), area under the concentration-time curve (AUC) and trough plasma concentration (Cmin) of steady-state tipranavir (500 mg with ritonavir 200 mg twice a day for 7 days) by 40%, 66%, and 100%, respectively, compared to historical data. Clarithromycin AUC and Cmin increased by 19% and 68%, respectively, while Cmax, AUC and Cmin of 14-hydroxyclarithromycin decreased by more than 90% each.
MANAGEMENT: No dosage adjustment of tipranavir or clarithromycin is necessary for patients with normal renal function. For patients with creatinine clearance between 30 and 60 mL/min, the dosage of clarithromycin should be reduced by 50%. For patients with creatinine clearance below 30 mL/min, the dosage of clarithromycin should be reduced by 75%.
References (1)
- (2005) "Product Information. Aptivus (tipranavir)." Boehringer-Ingelheim
amoxicillin clarithromycin
Applies to: amoxicillin / clarithromycin / lansoprazole and amoxicillin / clarithromycin / lansoprazole
Although some in vitro data indicate synergism between macrolide antibiotics and penicillins, other in vitro data indicate antagonism. When these drugs are given together, neither has predictable therapeutic efficacy. Data are available for erythromycin, although theoretically this interaction could occur with any macrolide. Except for monitoring of the effectiveness of antibiotic therapy, no special precautions appear to be necessary.
References (3)
- Strom J (1961) "Penicillin and erythromycin singly and in combination in scarlatina therapy and the interference between them." Antibiot Chemother, 11, p. 694-7
- Cohn JR, Jungkind DL, Baker JS (1980) "In vitro antagonism by erythromycin of the bactericidal action of antimicrobial agents against common respiratory pathogens." Antimicrob Agents Chemother, 18, p. 872-6
- Penn RL, Ward TT, Steigbigel RT (1982) "Effects of erythromycin in combination with penicillin, ampicillin, or gentamicin on the growth of listeria monocytogenes." Antimicrob Agents Chemother, 22, p. 289-94
Drug and food interactions
tipranavir food
Applies to: tipranavir
ADJUST DOSING INTERVAL: Food does not appear to substantially alter the pharmacokinetics of tipranavir. When tipranavir capsules or oral solution was coadministered with ritonavir capsules at steady-state, no clinically significant changes in tipranavir peak plasma concentration (Cmax) and systemic exposure (AUC) were observed under fed conditions (500 to 682 kcal, 23% to 25% calories from fat) relative to fasted conditions. The effect of food on tipranavir exposure during coadministration with ritonavir tablets has not been evaluated. High-fat foods may enhance the gastrointestinal absorption of tipranavir. In a multiple-dose study, administration of tipranavir capsules with a high-fat meal (868 kcal, 53% from fat, 31% from carbohydrates) increased the oral bioavailability of tipranavir by 31% compared to administration with toast and skimmed milk, but did not significantly affect tipranavir Cmax. Thus, tipranavir may be safely taken with standard or high-fat meals.
MANAGEMENT: Tipranavir coadministered with low-dose ritonavir should be taken with food to improve the gastrointestinal tolerability of ritonavir. According to the product labeling, tipranavir coadministered with ritonavir capsules or solution can be taken with or without meals, whereas tipranavir coadministered with ritonavir tablets must be taken with meals.
References (4)
- (2005) "Product Information. Aptivus (tipranavir)." Boehringer-Ingelheim
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
- Cerner Multum, Inc. "Australian Product Information."
clarithromycin food
Applies to: amoxicillin / clarithromycin / lansoprazole
Grapefruit juice may delay the gastrointestinal absorption of clarithromycin but does not appear to affect the overall extent of absorption or inhibit the metabolism of clarithromycin. The mechanism of interaction is unknown but may be related to competition for intestinal CYP450 3A4 and/or absorptive sites. In an open-label, randomized, crossover study consisting of 12 healthy subjects, coadministration with grapefruit juice increased the time to reach peak plasma concentration (Tmax) of both clarithromycin and 14-hydroxyclarithromycin (the active metabolite) by 80% and 104%, respectively, compared to water. Other pharmacokinetic parameters were not significantly altered. This interaction is unlikely to be of clinical significance.
References (1)
- Cheng KL, Nafziger AN, Peloquin CA, Amsden GW (1998) "Effect of grapefruit juice on clarithromycin pharmacokinetics." Antimicrob Agents Chemother, 42, p. 927-9
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.