Skip to main content

Drug Interactions between amoxicillin / clarithromycin / lansoprazole and saquinavir

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

clarithromycin saquinavir

Applies to: amoxicillin / clarithromycin / lansoprazole and saquinavir

CONTRAINDICATED: Saquinavir in combination with ritonavir may cause dose-related prolongation of the QT interval. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. In a study of 59 healthy volunteers aged 18 to 55 years who were administered saquinavir/ritonavir at a therapeutic dosage of 1000 mg/100 mg twice daily and a supratherapeutic dosage of 1500 mg/100 mg twice daily, the maximum mean QT prolongation (QTcS; study-specific QT interval correction) on treatment day 3 was 18.9 msec for the lower dosage and 30.2 msec for the supratherapeutic dosage, compared to 12.2 msec for the active control (moxifloxacin 400 mg). The majority of subjects (89% and 80% in the therapeutic and supratherapeutic groups, respectively) had a QTcS less than 450 msec, and none had a QTc interval exceeding the potentially clinically relevant threshold of 500 msec. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Coadministration of ritonavir-boosted saquinavir with other drugs that can prolong the QT interval is considered contraindicated.

References (7)
  1. (2001) "Product Information. Invirase (saquinavir)." Roche Laboratories
  2. Anson BD, Weaver JG, Ackerman MJ, et al. (2005) "Blockade of HERG channels by HIV protease inhibitors." Lancet, 365, p. 682-686
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  4. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  5. Cerner Multum, Inc. "Australian Product Information."
  6. FDA. U.S. Food and Drug Administration (2010) FDA drug safety communication: Ongoing safety review of Invirase (saquinavir) and possible association with abnormal heart rhythms. http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm201221.htm
  7. Biondi L (2010) Health Canada endorsed important safety information on Invirase (saquinavir mesylate). http://hc-sc.gc.ca/dhp-mps/alt_formats/pdf/medeff/advisories-avis/prof/2010/invirase_hpc-cps-eng.pdf
Moderate

clarithromycin lansoprazole

Applies to: amoxicillin / clarithromycin / lansoprazole and amoxicillin / clarithromycin / lansoprazole

MONITOR: Coadministration with clarithromycin may increase the plasma concentrations of lansoprazole. The proposed mechanism is clarithromycin inhibition of intestinal (first-pass) and hepatic metabolism of lansoprazole via CYP450 3A4. Although lansoprazole is primarily metabolized by CYP450 2C19 in the liver, 3A4-mediated metabolism is the predominant pathway in individuals who are 2C19-deficient (approximately 3% to 5% of the Caucasian and 17% to 20% of the Asian population). Additionally, inhibition of P-glycoprotein intestinal efflux transporter by clarithromycin may also contribute to the interaction, resulting in increased bioavailability of lansoprazole. In 18 healthy volunteers--six each of homozygous extensive metabolizers (EMs), heterozygous EMs, and poor metabolizers (PMs) of CYP450 2C19--clarithromycin (400 mg orally twice a day for 6 days) increased the peak plasma concentration (Cmax) of a single 60 mg oral dose of lansoprazole by 1.47, 1.71- and 1.52-fold, respectively, and area under the concentration-time curve (AUC) by 1.55-, 1.74- and 1.80-fold, respectively, in each of these groups compared to placebo. The AUC ratio of lansoprazole to lansoprazole sulphone, which is considered an index of CYP450 3A4 activity, was significantly increased by clarithromycin in all three groups. However, elimination half-life of lansoprazole was prolonged by 1.54-fold only in PMs. Mild diarrhea was reported in two subjects and mild abdominal disturbance in six subjects during clarithromycin coadministration. These side effects continued until day 6 and ameliorated the day after discontinuation of clarithromycin, whereas no adverse events were reported during placebo administration or after lansoprazole plus placebo. In another study, clarithromycin induced dose-dependent increases in the plasma concentration of lansoprazole in a group of 20 patients receiving treatment for H. pylori eradication. Mean 3-hour plasma lansoprazole concentration was 385 ng/mL for the control subjects who received lansoprazole 30 mg and amoxicillin 750 mg twice a day for 7 days; 696 ng/mL for patients coadministered clarithromycin 200 mg twice a day; and 947 ng/mL for patients coadministered clarithromycin 400 mg twice a day.

MANAGEMENT: Although lansoprazole is generally well tolerated, caution may be advised during coadministration with clarithromycin, particularly if higher dosages of one or both drugs are used. Dosage adjustment may be necessary in patients who experience excessive adverse effects of lansoprazole.

References (3)
  1. Ushiama H, Echizen H, Nachi S, Ohnishi A (2002) "Dose-dependent inhibition of CYP3A activity by clarithromycin during Helicobacter pylori eradication therapy assessed by changes in plasma lansoprazole levels and partial cortisol clearance to 6beta-hydroxycortisol." Clin Pharmacol Ther, 72, p. 33-43
  2. Saito M, Yasui-Furukori N, Uno T, et al. (2005) "Effects of clarithromycin on lansoprazole pharmacokinetics between CYP2C19 genotypes." Br J Clin Pharmacol, 59, p. 302-9
  3. Miura M, Tada H, Yasui-Furukori N, et al. (2005) "Effect of clarithromycin on the enantioselective disposition of lansoprazole in relation to CYP2C19 genotypes." Chirality, 17, p. 338-344
Moderate

lansoprazole saquinavir

Applies to: amoxicillin / clarithromycin / lansoprazole and saquinavir

MONITOR: The concomitant administration of some proton pump inhibitors with saquinavir, with or without ritonavir, may significantly increase exposure to saquinavir. When omeprazole 40 mg once daily and saquinavir/ritonavir 1000 mg/100 mg twice daily were administered to healthy subjects (n=18), the steady-state area under the concentration-time curve (AUC) and maximum plasma concentrations (Cmax) of saquinavir were increased by an average of 82 % (range, 37% to 234%) and 75 % (range, 31% to 234%), respectively, compared to saquinavir/ritonavir. Ritonavir concentrations were not changed significantly. The mechanism is unknown.

MANAGEMENT: Clinical and laboratory monitoring for saquinavir toxicity is recommended during concurrent use of a proton pump inhibitor. According to some authorities, a dose reduction for saquinavir may be considered.

References (5)
  1. (2022) "Product Information. PriLOSEC (omeprazole)." Merck & Co., Inc
  2. (2001) "Product Information. Invirase (saquinavir)." Roche Laboratories
  3. (2001) "Product Information. Nexium (esomeprazole)." Astra-Zeneca Pharmaceuticals
  4. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  5. (2014) "Product Information. NexIUM I.V. (esomeprazole)." Astra-Zeneca Pharmaceuticals
Minor

amoxicillin clarithromycin

Applies to: amoxicillin / clarithromycin / lansoprazole and amoxicillin / clarithromycin / lansoprazole

Although some in vitro data indicate synergism between macrolide antibiotics and penicillins, other in vitro data indicate antagonism. When these drugs are given together, neither has predictable therapeutic efficacy. Data are available for erythromycin, although theoretically this interaction could occur with any macrolide. Except for monitoring of the effectiveness of antibiotic therapy, no special precautions appear to be necessary.

References (3)
  1. Strom J (1961) "Penicillin and erythromycin singly and in combination in scarlatina therapy and the interference between them." Antibiot Chemother, 11, p. 694-7
  2. Cohn JR, Jungkind DL, Baker JS (1980) "In vitro antagonism by erythromycin of the bactericidal action of antimicrobial agents against common respiratory pathogens." Antimicrob Agents Chemother, 18, p. 872-6
  3. Penn RL, Ward TT, Steigbigel RT (1982) "Effects of erythromycin in combination with penicillin, ampicillin, or gentamicin on the growth of listeria monocytogenes." Antimicrob Agents Chemother, 22, p. 289-94

Drug and food interactions

Moderate

saquinavir food

Applies to: saquinavir

ADJUST DOSING INTERVAL: Food significantly increases the absorption of saquinavir.

MONITOR: Coadministration with grapefruit juice may increase the plasma concentrations of saquinavir. The primary mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. In eight healthy volunteers, ingestion of 400 mL of grapefruit juice prior to administration of a 600 mg dose of saquinavir mesylate increased the area under the plasma concentration-time curve and oral bioavailability of saquinavir by 50% and 100%, respectively, compared to water; however, the increase is not considered clinically relevant. A high degree of intersubject variability in the grapefruit juice effect was also observed. The extent to which this interaction may occur with the saquinavir free base soft gelatin capsule is unknown. However, the saquinavir soft gelatin capsule formulation is no longer commercially available.

MANAGEMENT: Saquinavir mesylate should be taken with meals or within 2 hours after eating to enhance bioavailability. Patients should be advised to avoid the consumption of large amounts of grapefruit and grapefruit juice during saquinavir therapy unless otherwise directed by their doctor, as the interaction is unreliable and subject to a high degree of interpatient variation.

References (6)
  1. (2001) "Product Information. Invirase (saquinavir)." Roche Laboratories
  2. Kupferschmidt HHT, Fattinger KE, Ha HR, Follath F, Krahenbuhl S (1998) "Grapefruit juice enhances the bioavailability of the HIV protease inhibitor saquinavir in man." Br J Clin Pharmacol, 45, p. 355-9
  3. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  4. Eagling VA, Profit L, Back DJ (1999) "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol, 48, p. 543-52
  5. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  6. Cerner Multum, Inc. "Australian Product Information."
Minor

clarithromycin food

Applies to: amoxicillin / clarithromycin / lansoprazole

Grapefruit juice may delay the gastrointestinal absorption of clarithromycin but does not appear to affect the overall extent of absorption or inhibit the metabolism of clarithromycin. The mechanism of interaction is unknown but may be related to competition for intestinal CYP450 3A4 and/or absorptive sites. In an open-label, randomized, crossover study consisting of 12 healthy subjects, coadministration with grapefruit juice increased the time to reach peak plasma concentration (Tmax) of both clarithromycin and 14-hydroxyclarithromycin (the active metabolite) by 80% and 104%, respectively, compared to water. Other pharmacokinetic parameters were not significantly altered. This interaction is unlikely to be of clinical significance.

References (1)
  1. Cheng KL, Nafziger AN, Peloquin CA, Amsden GW (1998) "Effect of grapefruit juice on clarithromycin pharmacokinetics." Antimicrob Agents Chemother, 42, p. 927-9

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.