Skip to main content

Drug Interactions between amoxicillin / clarithromycin / lansoprazole and rifapentine

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

clarithromycin lansoprazole

Applies to: amoxicillin / clarithromycin / lansoprazole and amoxicillin / clarithromycin / lansoprazole

MONITOR: Coadministration with clarithromycin may increase the plasma concentrations of lansoprazole. The proposed mechanism is clarithromycin inhibition of intestinal (first-pass) and hepatic metabolism of lansoprazole via CYP450 3A4. Although lansoprazole is primarily metabolized by CYP450 2C19 in the liver, 3A4-mediated metabolism is the predominant pathway in individuals who are 2C19-deficient (approximately 3% to 5% of the Caucasian and 17% to 20% of the Asian population). Additionally, inhibition of P-glycoprotein intestinal efflux transporter by clarithromycin may also contribute to the interaction, resulting in increased bioavailability of lansoprazole. In 18 healthy volunteers--six each of homozygous extensive metabolizers (EMs), heterozygous EMs, and poor metabolizers (PMs) of CYP450 2C19--clarithromycin (400 mg orally twice a day for 6 days) increased the peak plasma concentration (Cmax) of a single 60 mg oral dose of lansoprazole by 1.47, 1.71- and 1.52-fold, respectively, and area under the concentration-time curve (AUC) by 1.55-, 1.74- and 1.80-fold, respectively, in each of these groups compared to placebo. The AUC ratio of lansoprazole to lansoprazole sulphone, which is considered an index of CYP450 3A4 activity, was significantly increased by clarithromycin in all three groups. However, elimination half-life of lansoprazole was prolonged by 1.54-fold only in PMs. Mild diarrhea was reported in two subjects and mild abdominal disturbance in six subjects during clarithromycin coadministration. These side effects continued until day 6 and ameliorated the day after discontinuation of clarithromycin, whereas no adverse events were reported during placebo administration or after lansoprazole plus placebo. In another study, clarithromycin induced dose-dependent increases in the plasma concentration of lansoprazole in a group of 20 patients receiving treatment for H. pylori eradication. Mean 3-hour plasma lansoprazole concentration was 385 ng/mL for the control subjects who received lansoprazole 30 mg and amoxicillin 750 mg twice a day for 7 days; 696 ng/mL for patients coadministered clarithromycin 200 mg twice a day; and 947 ng/mL for patients coadministered clarithromycin 400 mg twice a day.

MANAGEMENT: Although lansoprazole is generally well tolerated, caution may be advised during coadministration with clarithromycin, particularly if higher dosages of one or both drugs are used. Dosage adjustment may be necessary in patients who experience excessive adverse effects of lansoprazole.

References

  1. Ushiama H, Echizen H, Nachi S, Ohnishi A (2002) "Dose-dependent inhibition of CYP3A activity by clarithromycin during Helicobacter pylori eradication therapy assessed by changes in plasma lansoprazole levels and partial cortisol clearance to 6beta-hydroxycortisol." Clin Pharmacol Ther, 72, p. 33-43
  2. Saito M, Yasui-Furukori N, Uno T, et al. (2005) "Effects of clarithromycin on lansoprazole pharmacokinetics between CYP2C19 genotypes." Br J Clin Pharmacol, 59, p. 302-9
  3. Miura M, Tada H, Yasui-Furukori N, et al. (2005) "Effect of clarithromycin on the enantioselective disposition of lansoprazole in relation to CYP2C19 genotypes." Chirality, 17, p. 338-344

Switch to consumer interaction data

Moderate

clarithromycin rifapentine

Applies to: amoxicillin / clarithromycin / lansoprazole and rifapentine

MONITOR: Coadministration with rifapentine may decrease the plasma concentrations of drugs that are substrates of the CYP450 2C8, 2C9, and/or 3A4 isoenzymes. The mechanism is accelerated clearance due to induction of these isoenzymes by rifapentine. Enzyme activities may be induced within 4 days of the first dose and return to normal 14 days after discontinuation of rifapentine. In vitro and in vivo enzyme studies have suggested rifapentine induction potential to be less than that of rifampin but greater than that of rifabutin. In addition, the magnitude of induction is dependent on dose and dosing frequency.

MANAGEMENT: The possibility of a diminished therapeutic response to drugs that are known substrates of CYP450 2C8, 2C9, and/or 3A4 should be considered during coadministration with rifapentine. Dosage adjustments as well as clinical and laboratory monitoring may be appropriate for some drugs, particularly those with a narrow therapeutic range, whenever rifapentine is added to or withdrawn from therapy.

References

  1. (2001) "Product Information. Priftin (rifapentine)." Hoechst Marion Roussel
  2. Thijssen HH, Flin ois JP, Beaune PH (2000) "Cytochrome P4502C9 is the principal catalyst of racemic acenocoumarol hydroxylation reactions in human liver microsomes." Drug Metab Dispos, 28, p. 1284-90

Switch to consumer interaction data

Minor

amoxicillin clarithromycin

Applies to: amoxicillin / clarithromycin / lansoprazole and amoxicillin / clarithromycin / lansoprazole

Although some in vitro data indicate synergism between macrolide antibiotics and penicillins, other in vitro data indicate antagonism. When these drugs are given together, neither has predictable therapeutic efficacy. Data are available for erythromycin, although theoretically this interaction could occur with any macrolide. Except for monitoring of the effectiveness of antibiotic therapy, no special precautions appear to be necessary.

References

  1. Strom J (1961) "Penicillin and erythromycin singly and in combination in scarlatina therapy and the interference between them." Antibiot Chemother, 11, p. 694-7
  2. Cohn JR, Jungkind DL, Baker JS (1980) "In vitro antagonism by erythromycin of the bactericidal action of antimicrobial agents against common respiratory pathogens." Antimicrob Agents Chemother, 18, p. 872-6
  3. Penn RL, Ward TT, Steigbigel RT (1982) "Effects of erythromycin in combination with penicillin, ampicillin, or gentamicin on the growth of listeria monocytogenes." Antimicrob Agents Chemother, 22, p. 289-94

Switch to consumer interaction data

Drug and food interactions

Moderate

rifapentine food

Applies to: rifapentine

ADJUST DOSING INTERVAL: Administration with food may increase the oral bioavailability of rifapentine and reduce the incidence of gastrointestinal adverse events. Administration with a high fat meal typically increases rifapentine's maximum concentration (Cmax) and systemic exposure (AUC) by approximately 40% to 50% over that observed when rifapentine is administered under fasting conditions. Rifapentine is often prescribed in combination with isoniazid. When single doses of rifapentine (900 mg) and isoniazid (900 mg) were administered with a low fat, high carbohydrate breakfast, the Cmax and AUC of rifapentine increased by 47% and 51%, respectively. On the other hand, isoniazid's Cmax and AUC decreased by 46% and 23%, respectively.

MANAGEMENT: Products containing oral rifapentine as the sole ingredient recommend administration with a meal to increase bioavailability and reduce the occurrence of gastrointestinal upset, nausea, and/or vomiting. Consultation of product labeling for combination products and/or relevant guidelines may be helpful if rifapentine is combined with a medication that is typically taken on an empty stomach.

References

  1. (2021) "Product Information. Isoniazid/Rifapentine 300 mg/300 mg (Macleods) (isoniazid-rifapentine)." Imported (India), 2
  2. (2021) "Product Information. Priftin (rifapentine)." sanofi-aventis

Switch to consumer interaction data

Minor

clarithromycin food

Applies to: amoxicillin / clarithromycin / lansoprazole

Grapefruit juice may delay the gastrointestinal absorption of clarithromycin but does not appear to affect the overall extent of absorption or inhibit the metabolism of clarithromycin. The mechanism of interaction is unknown but may be related to competition for intestinal CYP450 3A4 and/or absorptive sites. In an open-label, randomized, crossover study consisting of 12 healthy subjects, coadministration with grapefruit juice increased the time to reach peak plasma concentration (Tmax) of both clarithromycin and 14-hydroxyclarithromycin (the active metabolite) by 80% and 104%, respectively, compared to water. Other pharmacokinetic parameters were not significantly altered. This interaction is unlikely to be of clinical significance.

References

  1. Cheng KL, Nafziger AN, Peloquin CA, Amsden GW (1998) "Effect of grapefruit juice on clarithromycin pharmacokinetics." Antimicrob Agents Chemother, 42, p. 927-9

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.