Skip to main content

Drug Interactions between metoprolol and Tums Dual Action

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

metoprolol calcium carbonate

Applies to: metoprolol and Tums Dual Action (calcium carbonate / famotidine / magnesium hydroxide)

ADJUST DOSING INTERVAL: Concurrent administration with calcium salts may decrease the oral bioavailability of atenolol and possibly other beta-blockers. The exact mechanism of interaction is unknown. In six healthy subjects, calcium 500 mg (as lactate, carbonate, and gluconate) reduced the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of atenolol (100 mg) by 51% and 32%, respectively. The elimination half-life increased by 44%. Twelve hours after the combination, beta-blocking activity (as indicated by inhibition of exercise tachycardia) was reduced compared to that with atenolol alone. However, during a 4-week treatment in six hypertensive patients, there was no difference in blood pressure values between treatments. The investigators suggest that prolongation of the elimination half-life induced by calcium coadministration may have led to atenolol cumulation during long-term dosing, which compensated for the reduced bioavailability.

MANAGEMENT: It may help to separate the administration times of beta-blockers and calcium products by at least 2 hours. Patients should be monitored for potentially diminished beta-blocking effects following the addition of calcium therapy.

References

  1. Kirch W, Schafer-Korting M, Axthelm T, Kohler H, Mutschler E "Interaction of atenolol with furosemide and calcium and aluminum salts." Clin Pharmacol Ther 30 (1981): 429-35

Switch to consumer interaction data

Minor

famotidine calcium carbonate

Applies to: Tums Dual Action (calcium carbonate / famotidine / magnesium hydroxide) and Tums Dual Action (calcium carbonate / famotidine / magnesium hydroxide)

Antacids and some aluminum, calcium, and magnesium salts may decrease the plasma concentrations of H2-receptor antagonists during oral coadministration. The mechanism of interaction is unknown, but may involve reduced oral absorption due to increased gastric pH. Study data vary, with no changes to nearly 60% reductions in systemic exposures (AUCs) reported for cimetidine, famotidine, and ranitidine. The clinical significance has not been established. As a precaution, patients may consider taking H2-receptor antagonists one to two hours before antacids.

References

  1. Donn KH, Eshelman FN, Plachetka JR, et al. "The effects of antacid and propantheline on the absorption of oral ranitidine." Pharmacotherapy 4 (1984): 89-92
  2. Albin H, Vincon G, Demotes-Mainard F, et al. "Effect of aluminium phosphate on the bioavailability of cimetidine and prednisolone." Eur J Clin Pharmacol 26 (1984): 271-3
  3. Lin JH, Chremos AN, Kanovsky SM, Schwartz S, Yeh KC, Kann J "Effects of antacids and food on absorption of famotidine." Br J Clin Pharmacol 24 (1987): 551-3
  4. Bodemar G, Norlander B, Walan A "Diminished absorption of cimetidine caused by antacids." Lancet 02/24/79 (1979): 444-5
  5. Steinberg WM, Lewis JH, Katz DM "Antacids inhibit absorption of cimetidine." N Engl J Med 307 (1982): 400-4
  6. Barzaghi N, Gatti G, Crema F, Perucca E "Impaired bioavailability of famotidine given concurrently with a potent antacid." J Clin Pharmacol 29 (1989): 670-2
  7. Russell WL, Lopez LM, Normann SA, et al. "Effect of antacids on predicted steady-state cimetidine concentrations." Dig Dis Sci 29 (1984): 385-9
  8. Shelly DW, Doering PL, Russell WL, Guild RT, Lopez LM, Perrin J "Effect of concomitant antacid administration on plasma cimetidine concentrations during repetitive dosing." Drug Intell Clin Pharm 20 (1986): 792-5
  9. Albin H, Vincon G, Begaud B, Bistue C, Perez P "Effect of aluminum phosphate on the bioavailability of ranitidine." Eur J Clin Pharmacol 32 (1987): 97-9
  10. Mihaly GW, Marino AT, Webster LK, Jones DB, Louis WJ, Smallwood RA "High dose of antacid (Mylanta II) reduces bioavailability of ranitidine." Br Med J 285 (1982): 998-9
  11. Covington TR, eds., Lawson LC, Young LL "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association (1993):
  12. Bachmann KA, Sullivan TJ, Jauregui L, Reese J, Miller K, Levine L "Drug interactions of h-2-receptor antagonists." Scand J Gastroenterol 29 (1994): 14-9
View all 12 references

Switch to consumer interaction data

Minor

metoprolol magnesium hydroxide

Applies to: metoprolol and Tums Dual Action (calcium carbonate / famotidine / magnesium hydroxide)

Concurrent administration with aluminum and magnesium antacids has been shown to decrease the oral bioavailability of certain beta-blockers, although data are conflicting. The exact mechanism of interaction is unknown but may involve cation binding of beta-blockers or a reduction in the dissolution rate due to increased gastric pH. In six healthy volunteers, concomitant administration of a single dose of antacid (magnesium hydroxide-aluminum oxide 1200 mg-1800 mg) reduced the peak plasma concentration (Cmax), area under the concentration-time curve (AUC) and 24-hour urinary excretion of sotalol (160 mg) by 27%, 21% and 9%, respectively, while administration of the antacid 2 hours after the sotalol dose produced no change. Pharmacodynamic data suggest that the negative chronotropic effect of sotalol was also reduced up to 4 hours after administration of the combination, although the lack of a placebo control might have confounded the results. In another study, concomitant administration of an aluminum hydroxide antacid in six healthy volunteers decreased atenolol (100 mg) Cmax and AUC by 37% and 33%, respectively. However, the Cmax and AUC of metoprolol (100 mg) in the same group was increased 25% and 11%, respectively, by administration of the antacid. Two other studies with aluminum hydroxide failed to find a significant effect on pharmacokinetics or pharmacodynamics of atenolol and propranolol. Based on available data, the clinical significance of this potential interaction is difficult to determine. As a precaution, patients may want to consider separating the administration times of beta-blockers and antacids or other aluminum- or magnesium-containing products by at least 2 hours.

References

  1. Kirch W, Schafer-Korting M, Axthelm T, Kohler H, Mutschler E "Interaction of atenolol with furosemide and calcium and aluminum salts." Clin Pharmacol Ther 30 (1981): 429-35
  2. D'Arcy PF, McElnay JC "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm 21 (1987): 607-17
  3. Hong CY, Hu SC, Lin SJ, Chiang BN "Lack of influence of aluminum hydroxide on the bioavailability and beta-adrenoceptor blocking activity of propranolol." Int J Clin Pharmacol Ther Toxicol 23 (1985): 244-6
  4. Dobbs JH, Skoutakis VA, Acchiardo SR, Dobbs BR "Effects of aluminum hydroxide on the absorption of propranolol." Curr Ther Res Clin Exp 21 (1977): 887-92
  5. Regardh CG, Lundborg P, Persson BA "The effect of antacid, metoclopramide, and propantheline on the bioavailability of metoprolol and atenolol." Biopharm Drug Dispos 2 (1981): 79-87
  6. Gugler R, Allgayer H "Effects of antacids on the clinical pharmacokinetics of drugs. An update." Clin Pharmacokinet 18 (1990): 210-9
  7. Laer S, Neumann J, Scholz H "Interaction between sotalol and an antacid preparation." Br J Clin Pharmacol 43 (1997): 269-72
View all 7 references

Switch to consumer interaction data

Minor

famotidine magnesium hydroxide

Applies to: Tums Dual Action (calcium carbonate / famotidine / magnesium hydroxide) and Tums Dual Action (calcium carbonate / famotidine / magnesium hydroxide)

Antacids and some aluminum, calcium, and magnesium salts may decrease the plasma concentrations of H2-receptor antagonists during oral coadministration. The mechanism of interaction is unknown, but may involve reduced oral absorption due to increased gastric pH. Study data vary, with no changes to nearly 60% reductions in systemic exposures (AUCs) reported for cimetidine, famotidine, and ranitidine. The clinical significance has not been established. As a precaution, patients may consider taking H2-receptor antagonists one to two hours before antacids.

References

  1. Donn KH, Eshelman FN, Plachetka JR, et al. "The effects of antacid and propantheline on the absorption of oral ranitidine." Pharmacotherapy 4 (1984): 89-92
  2. Albin H, Vincon G, Demotes-Mainard F, et al. "Effect of aluminium phosphate on the bioavailability of cimetidine and prednisolone." Eur J Clin Pharmacol 26 (1984): 271-3
  3. Lin JH, Chremos AN, Kanovsky SM, Schwartz S, Yeh KC, Kann J "Effects of antacids and food on absorption of famotidine." Br J Clin Pharmacol 24 (1987): 551-3
  4. Bodemar G, Norlander B, Walan A "Diminished absorption of cimetidine caused by antacids." Lancet 02/24/79 (1979): 444-5
  5. Steinberg WM, Lewis JH, Katz DM "Antacids inhibit absorption of cimetidine." N Engl J Med 307 (1982): 400-4
  6. Barzaghi N, Gatti G, Crema F, Perucca E "Impaired bioavailability of famotidine given concurrently with a potent antacid." J Clin Pharmacol 29 (1989): 670-2
  7. Russell WL, Lopez LM, Normann SA, et al. "Effect of antacids on predicted steady-state cimetidine concentrations." Dig Dis Sci 29 (1984): 385-9
  8. Shelly DW, Doering PL, Russell WL, Guild RT, Lopez LM, Perrin J "Effect of concomitant antacid administration on plasma cimetidine concentrations during repetitive dosing." Drug Intell Clin Pharm 20 (1986): 792-5
  9. Albin H, Vincon G, Begaud B, Bistue C, Perez P "Effect of aluminum phosphate on the bioavailability of ranitidine." Eur J Clin Pharmacol 32 (1987): 97-9
  10. Mihaly GW, Marino AT, Webster LK, Jones DB, Louis WJ, Smallwood RA "High dose of antacid (Mylanta II) reduces bioavailability of ranitidine." Br Med J 285 (1982): 998-9
  11. Covington TR, eds., Lawson LC, Young LL "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association (1993):
  12. Bachmann KA, Sullivan TJ, Jauregui L, Reese J, Miller K, Levine L "Drug interactions of h-2-receptor antagonists." Scand J Gastroenterol 29 (1994): 14-9
View all 12 references

Switch to consumer interaction data

Drug and food interactions

Moderate

metoprolol food

Applies to: metoprolol

ADJUST DOSING INTERVAL: The bioavailability of metoprolol may be enhanced by food.

MANAGEMENT: Patients may be instructed to take metoprolol at the same time each day, preferably with or immediately following meals.

References

  1. "Product Information. Lopressor (metoprolol)." Novartis Pharmaceuticals PROD (2001):
  2. Darcy PF "Nutrient-drug interactions." Adverse Drug React Toxicol Rev 14 (1995): 233-54

Switch to consumer interaction data

Moderate

calcium carbonate food

Applies to: Tums Dual Action (calcium carbonate / famotidine / magnesium hydroxide)

ADJUST DOSING INTERVAL: Administration with food may increase the absorption of calcium. However, foods high in oxalic acid (spinach or rhubarb), or phytic acid (bran and whole grains) may decrease calcium absorption.

MANAGEMENT: Calcium may be administered with food to increase absorption. Consider withholding calcium administration for at least 2 hours before or after consuming foods high in oxalic acid or phytic acid.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  2. Canadian Pharmacists Association "e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink" (2006):
  3. Cerner Multum, Inc. "Australian Product Information." O 0
  4. Agencia EspaƱola de Medicamentos y Productos Sanitarios Healthcare "Centro de informaciĆ³n online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html" (2008):
  5. Mangels AR "Bone nutrients for vegetarians." Am J Clin Nutr 100 (2014): epub
  6. Davies NT "Anti-nutrient factors affecting mineral utilization." Proc Nutr Soc 38 (1979): 121-8
View all 6 references

Switch to consumer interaction data

Moderate

metoprolol food

Applies to: metoprolol

ADJUST DOSING INTERVAL: Concurrent administration with calcium salts may decrease the oral bioavailability of atenolol and possibly other beta-blockers. The exact mechanism of interaction is unknown. In six healthy subjects, calcium 500 mg (as lactate, carbonate, and gluconate) reduced the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of atenolol (100 mg) by 51% and 32%, respectively. The elimination half-life increased by 44%. Twelve hours after the combination, beta-blocking activity (as indicated by inhibition of exercise tachycardia) was reduced compared to that with atenolol alone. However, during a 4-week treatment in six hypertensive patients, there was no difference in blood pressure values between treatments. The investigators suggest that prolongation of the elimination half-life induced by calcium coadministration may have led to atenolol cumulation during long-term dosing, which compensated for the reduced bioavailability.

MANAGEMENT: It may help to separate the administration times of beta-blockers and calcium products by at least 2 hours. Patients should be monitored for potentially diminished beta-blocking effects following the addition of calcium therapy.

References

  1. Kirch W, Schafer-Korting M, Axthelm T, Kohler H, Mutschler E "Interaction of atenolol with furosemide and calcium and aluminum salts." Clin Pharmacol Ther 30 (1981): 429-35

Switch to consumer interaction data

Minor

famotidine food

Applies to: Tums Dual Action (calcium carbonate / famotidine / magnesium hydroxide)

H2 antagonists may reduce the clearance of nicotine. Cimetidine, 600 mg given twice a day for two days, reduced clearance of an intravenous nicotine dose by 30%. Ranitidine, 300 mg given twice a day for two days, reduced clearance by 10%. The clinical significance of this interaction is not known. Patients should be monitored for increased nicotine effects when using the patches or gum for smoking cessation and dosage adjustments should be made as appropriate.

References

  1. Bendayan R, Sullivan JT, Shaw C, Frecker RC, Sellers EM "Effect of cimetidine and ranitidine on the hepatic and renal elimination of nicotine in humans." Eur J Clin Pharmacol 38 (1990): 165-9

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.