Skip to main content

Drug Interactions between Cipro I.V. and tamoxifen

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

ciprofloxacin tamoxifen

Applies to: Cipro I.V. (ciprofloxacin) and tamoxifen

MONITOR: Theoretically, concurrent use of two or more drugs that can cause QT interval prolongation may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. The risk of an individual agent or a combination of these agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Caution and clinical monitoring are recommended if multiple agents associated with QT interval prolongation are prescribed together. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References

  1. Glassman AH, Bigger JT Jr "Antipsychotic drugs: prolonged QTc interval, torsade de pointes, and sudden death." Am J Psychiatry 158 (2001): 1774-82
  2. Witchel HJ, Hancox JC, Nutt DJ "Psychotropic drugs, cardiac arrhythmia, and sudden death." J Clin Psychopharmacol 23 (2003): 58-77
  3. Iannini PB "Cardiotoxicity of macrolides, ketolides and fluoroquinolones that prolong the QTc interval." Expert Opin Drug Saf 1 (2002): 121-8
  4. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  5. Canadian Pharmacists Association "e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink" (2006):
  6. Cerner Multum, Inc. "Australian Product Information." O 0
  7. EMA. European Medicines Agency. European Union "EMA - List of medicines under additional monitoring. http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000366.jsp&mid=WC0b01ac058067c852" (2013):
View all 7 references

Switch to consumer interaction data

Drug and food interactions

Moderate

ciprofloxacin food

Applies to: Cipro I.V. (ciprofloxacin)

ADJUST DOSING INTERVAL: Concurrent ingestion of dairy products (milk, yogurt) or calcium-fortified foods (i.e., cereal, orange juice) may decrease the activity of certain oral fluoroquinolone antibiotics. The mechanism is chelation of calcium and the quinolone, resulting in decreased bioavailability. In the case of orange juice, inhibition of intestinal transport mechanisms (P-glycoprotein or organic anion-transporting polypeptides) by flavones may also be involved. One study reported an average 41% decrease in maximum plasma concentrations and a 38% decrease in AUC when ciprofloxacin was given with calcium-fortified orange juice instead of water. Administration of ciprofloxacin tablets with enteral nutrition may reduce its bioavailability and maximum serum concentrations. Data have been conflicting and variable by the type of enteral nutrition product, location of the feeding tube, and patient characteristics. Decreased absorption is expected if ciprofloxacin is given by jejunostomy tube.

MANAGEMENT: Oral ciprofloxacin should not be taken with dairy products or calcium-fortified foods alone, but may be taken with meals that contain these products. When taken alone, dairy products or calcium-fortified foods should be ingested at least 2 hours before or after ciprofloxacin administration. When ciprofloxacin tablets are administered to patients receiving continuous enteral nutrition, some experts recommend that the tube feeding should be interrupted for at least 1 hour before and 2 hours after the dose of ciprofloxacin is given. Patients should be monitored for altered antimicrobial efficacy and switched to intravenous ciprofloxacin if necessary. If no enteral route besides a jejunostomy tube is available, it is also recommended to switch to intravenous ciprofloxacin. According to the manufacturer, ciprofloxacin oral suspension should not be administered via nasogastric or feeding tubes due to its physical characteristics.

References

  1. "Product Information. Cipro (ciprofloxacin)." Bayer PROD (2002):
  2. Yuk JH, Nightingale CH, Sweeney KR, Quintiliani R, Lettieri JT, Forst RW "Relative bioavailability in healthy volunteers of ciprofloxacin administered through a nasogastric tube with and without enteral feeding." Antimicrob Agents Chemother 33 (1989): 1118-20
  3. Yuk JH, Nightingale CH, Quintiliani R "Absorption of ciprofloxacin administered through a nasogastric or a nasoduodenal tube in volunteers and patients receiving enteral nutrition." Diagn Microbiol Infect Dis 13 (1990): 99-102
  4. Noer BL, Angaran DW "The effect of enteral feedings on ciprofloxacin pharmacokinetics." Pharmacotherapy 10 (1990): 254
  5. Neuhofel AL, Wilton JH, Victory JM, Hejmanowsk LG, Amsden GW "Lack of bioequivalence of ciprofloxacin when administered with calcium-fortified orange juice: a new twist on an old interaction." J Clin Pharmacol 42 (2002): 461-6
  6. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm 66 (2009): 1438-67
View all 6 references

Switch to consumer interaction data

Moderate

tamoxifen food

Applies to: tamoxifen

GENERALLY AVOID: Due to their estrogenic effect, isoflavones present in soy such as genistein and daidzein may stimulate breast tumor growth and antagonize the antiproliferative action of tamoxifen. Supportive data are derived primarily from in vitro and animal studies. In vitro, low concentrations of these phytoestrogens have been found to promote DNA synthesis and reverse the inhibitory effect of tamoxifen on estrogen-dependent breast cancer cell proliferation. In contrast, high concentrations of genistein greater than 10 microM/L have been found to enhance tamoxifen effects by inhibiting breast cancer cell growth. It is not known if these high concentrations are normally achieved in humans. Plasma concentrations below 4 microM/L have been observed in healthy volunteers given a soy diet for one month or large single doses of genistein. These concentrations are comparable to the low plasma concentrations associated with tumor stimulation reported in animals. In a study of 155 female breast cancer survivors with substantially bothersome hot flashes, a product containing 50 mg of soy isoflavones (40% to 45% genistein; 40% to 45% daidzein; 10% to 20% glycitein) taken three times a day was found to be no more effective than placebo in reducing hot flashes. No toxicity or recurrence of breast cancer was reported during the 9-week study period.

Green tea does not appear to have significant effects on the pharmacokinetics of tamoxifen or its primary active metabolite, endoxifen. In a study consisting of 14 patients who have been receiving tamoxifen treatment at a stable dose of 20 mg (n=13) or 40 mg (n=1) once daily for at least 3 months, coadministration with green tea supplements twice daily for 14 days resulted in no significant differences in the pharmacokinetics of either tamoxifen or endoxifen with respect to peak plasma concentration (Cmax), systemic exposure (AUC), and trough plasma concentration (Cmin) compared to administration of tamoxifen alone. The combination was well tolerated, with all reported adverse events categorized as mild (grade 1) and none categorized as serious or severe (grade 3 or higher) during the entire study. Although some adverse events such as headache, polyuria, gastrointestinal side effects (e.g., constipation, dyspepsia), and minor liver biochemical disturbances were reported more often during concomitant treatment with green tea, most can be attributed to the high dose of green tea used or to the caffeine in green tea. The green tea supplements used were 1000 mg in strength and contained 150 mg of epigallocatechin-3-gallate (EGCG), the most abundant and biologically active catechin in green tea. According to the investigators, the total daily dose of EGCG taken by study participants is equivalent to the amount contained in approximately 5 to 6 cups of regular green tea. However, it is not known to what extent the data from this study may be applicable to other preparations of green tea such as infusions, since the bioavailability of EGCG and other catechins may vary between preparations.

MANAGEMENT: Until more information is available, patients treated with tamoxifen may consider avoiding or limiting the consumption of soy-containing products. Consumption of green tea and green tea extracts during tamoxifen therapy appears to be safe.

References

  1. Therapeutic Research Faculty "Natural Medicines Comprehensive Database. http://www.naturaldatabase.com" (2008):
  2. Braal CL, Hussaarts KGAM, Seuren L, et al. "Influence of green tea consumption on endoxifen steady-state concentration in breast cancer patients treated with tamoxifen." Breast Cancer Res Treat 184 (2020): 107-13

Switch to consumer interaction data

Moderate

ciprofloxacin food

Applies to: Cipro I.V. (ciprofloxacin)

ADJUST DOSING INTERVAL: Oral preparations that contain magnesium, aluminum, or calcium may significantly decrease the gastrointestinal absorption of quinolone antibiotics. Absorption may also be reduced by sucralfate, which contains aluminum, as well as other polyvalent cations such as iron and zinc. The mechanism is chelation of quinolones by polyvalent cations, forming a complex that is poorly absorbed from the gastrointestinal tract. The bioavailability of ciprofloxacin has been reported to decrease by as much as 90% when administered with antacids containing aluminum or magnesium hydroxide.

MANAGEMENT: When coadministration cannot be avoided, quinolone antibiotics should be dosed either 2 to 4 hours before or 4 to 6 hours after polyvalent cation-containing products to minimize the potential for interaction. When coadministered with Suprep Bowel Prep (magnesium/potassium/sodium sulfates), the manufacturer recommends administering fluoroquinolone antibiotics at least 2 hours before and not less than 6 hours after Suprep Bowel Prep to avoid chelation with magnesium. Please consult individual product labeling for specific recommendations.

References

  1. Polk RE, Helay DP, Sahai J, Drwal L, Racht E "Effect of ferrous sulfate and multivitamins with zinc on absorption of ciprofloxacin in normal volunteers." Antimicrob Agents Chemother 33 (1989): 1841-4
  2. Nix DE, Watson WA, Lener ME, et al. "Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin." Clin Pharmacol Ther 46 (1989): 700-5
  3. Garrelts JC, Godley PJ, Peterie JD, Gerlach EH, Yakshe CC "Sucralfate significantly reduces ciprofloxacin concentrations in serum." Antimicrob Agents Chemother 34 (1990): 931-3
  4. Frost RW, Lasseter KC, Noe AJ, Shamblen EC, Lettieri JT "Effects of aluminum hydroxide and calcium carbonate antacids on the bioavailability of ciprofloxacin." Antimicrob Agents Chemother 36 (1992): 830-2
  5. Yuk JH "Ciprofloxacin levels when receiving sucralfate." J Am Geriatr Soc 262 (1989): 901
  6. Deppermann KM, Lode H, Hoffken G, Tschink G, Kalz C, Koeppe P "Influence of ranitidine, pirenzepine, and aluminum magnesium hydroxide on the bioavailability of various antibiotics, including amoxicillin, cephalexin, doxycycline, and amoxicillin-clavulanic acid." Antimicrob Agents Chemother 33 (1989): 1901-7
  7. Campbell NR, Kara M, Hasinoff BB, Haddara WM, McKay DW "Norfloxacin interaction with antacids and minerals." Br J Clin Pharmacol 33 (1992): 115-6
  8. Parpia SH, Nix DE, Hejmanowski LG, Goldstein HR, Wilton JH, Schentag JJ "Sucralfate reduces the gastrointestinal absorption of norfloxacin." Antimicrob Agents Chemother 33 (1989): 99-102
  9. Nix DE, Wilton JH, Ronald B, Distlerath L, Williams VC, Norman A "Inhibition of norfloxacin absorption by antacids." Antimicrob Agents Chemother 34 (1990): 432-5
  10. Akerele JO, Okhamafe AO "Influence of oral co-administered metallic drugs on ofloxacin pharmacokinetics." J Antimicrob Chemother 28 (1991): 87-94
  11. Wadworth AN, Goa KL "Lomefloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use." Drugs 42 (1991): 1018-60
  12. Shimada J, Shiba K, Oguma T, et al. "Effect of antacid on absorption of the quinolone lomefloxacin." Antimicrob Agents Chemother 36 (1992): 1219-24
  13. Sahai J, Healy DP, Stotka J, Polk RE "The influence of chronic administration of calcium carbonate on the bioavailability of oral ciprofloxacin." Br J Clin Pharmacol 35 (1993): 302-4
  14. Lehto P, Kivisto KT "Effect of sucralfate on absorption of norfloxacin and ofloxacin." Antimicrob Agents Chemother 38 (1994): 248-51
  15. Noyes M, Polk RE "Norfloxacin and absorption of magnesium-aluminum." Ann Intern Med 109 (1988): 168-9
  16. Grasela TH Jr, Schentag JJ, Sedman AJ, et al. "Inhibition of enoxacin absorption by antacids or ranitidine." Antimicrob Agents Chemother 33 (1989): 615-7
  17. Lehto P, Kivisto KT "Different effects of products containing metal ions on the absorption of lomefloxacin." Clin Pharmacol Ther 56 (1994): 477-82
  18. Spivey JM, Cummings DM, Pierson NR "Failure of prostatitis treatment secondary to probable ciprofloxacin-sucralfate drug interaction." Pharmacotherapy 16 (1996): 314-6
  19. "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical PROD (2001):
  20. "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome PROD (2001):
  21. "Product Information. Zagam (sparfloxacin)." Rhone Poulenc Rorer PROD (2001):
  22. "Product Information. Trovan (trovafloxacin)." Pfizer U.S. Pharmaceuticals PROD (2001):
  23. Teng R, Dogolo LC, Willavize SA, Friedman HL, Vincent J "Effect of Maalox and omeprazole on the bioavailability of trovafloxacin." J Antimicrob Chemother 39 Suppl B (1997): 93-7
  24. Zix JA, Geerdes-Fenge HF, Rau M, Vockler J, Borner K, Koeppe P, Lode H "Pharmacokinetics of sparfloxacin and interaction with cisapride and sucralfate." Antimicrob Agents Chemother 41 (1997): 1668-72
  25. Honig PK, Gillespie BK "Clinical significance of pharmacokinetic drug interactions with over-the-counter (OTC) drugs." Clin Pharmacokinet 35 (1998): 167-71
  26. Johnson RD, Dorr MB, Talbot GH, Caille G "Effect of Maalox on the oral absorption of sparfloxacin." Clin Ther 20 (1998): 1149-58
  27. Lober S, Ziege S, Rau M, Schreiber G, Mignot A, Koeppe P, Lode H "Pharmacokinetics of gatifloxacin and interaction with an antacid containing aluminum and magnesium." Antimicrob Agents Chemother 43 (1999): 1067-71
  28. Allen A, Vousden M, Porter A, Lewis A "Effect of Maalox((R)) on the bioavailability of oral gemifloxacin in healthy volunteers." Chemotherapy 45 (1999): 504-11
  29. Kamberi M, Nakashima H, Ogawa K, Oda N, Nakano S "The effect of staggered dosing of sucralfate on oral bioavailability of sparfloxacin." Br J Clin Pharmacol 49 (2000): 98-103
  30. "Product Information. Factive (gemifloxacin)." *GeneSoft Inc (2003):
  31. "Product Information. Suprep Bowel Prep Kit (magnesium/potassium/sodium sulfates)." Braintree Laboratories (2010):
  32. "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc. (2017):
View all 32 references

Switch to consumer interaction data

Moderate

ciprofloxacin food

Applies to: Cipro I.V. (ciprofloxacin)

MONITOR: Coadministration with certain quinolones may increase the plasma concentrations and pharmacologic effects of caffeine due to inhibition of the CYP450 1A2 metabolism of caffeine. Quinolones that may inhibit CYP450 1A2 include ciprofloxacin, enoxacin, grepafloxacin, nalidixic acid, norfloxacin, pipemidic acid, and pefloxacin (not all commercially available). In healthy volunteers, enoxacin (100 to 400 mg twice daily) increased systemic exposure (AUC) of caffeine by 2- to 5-fold and reduced its clearance by approximately 80%. Pipemidic acid (400 to 800 mg twice daily) increased AUC of caffeine by 2- to 3-fold and reduced its clearance by approximately 60%. Ciprofloxacin (250 to 750 mg twice daily) increased AUC and elimination half-life of caffeine by 50% to over 100%, and reduced its clearance by 30% to 50%. Norfloxacin 400 mg twice daily increased caffeine AUC by 16%, while 800 mg twice daily increased caffeine AUC by 52% and reduced its clearance by 35%. Pefloxacin (400 mg twice daily) has been shown to reduce caffeine clearance by 47%.

MANAGEMENT: Patients using caffeine-containing products should be advised that increased adverse effects such as headache, tremor, restlessness, nervousness, insomnia, tachycardia, and blood pressure increases may occur during coadministration with quinolones that inhibit CYP450 1A2. Caffeine intake should be limited when taking high dosages of these quinolones. If an interaction is suspected, other quinolones such as gatifloxacin, gemifloxacin, levofloxacin, lomefloxacin, moxifloxacin, and ofloxacin may be considered, since they are generally believed to have little or no effect on CYP450 1A2 or have been shown not to interact with caffeine.

References

  1. Polk RE "Drug-drug interactions with ciprofloxacin and other fluoroquinolones." Am J Med 87 (1989): s76-81
  2. Healy DP, Polk RE, Kanawati L, Rock DT, Mooney ML "Interaction between oral ciprofloxacin and caffeine in normal volunteers." Antimicrob Agents Chemother 33 (1989): 474-8
  3. Harder S, Fuhr U, Staib AH, Wolf T "Ciprofloxacin-caffeine: a drug interaction established using in vivo and in vitro investigations." Am J Med 87 (1989): 89-91
  4. Carbo ML, Segura J, De la Torre R, et al. "Effect of quinolones on caffeine disposition." Clin Pharmacol Ther 45 (1989): 234-40
  5. "Product Information. Penetrax (enoxacin)." Rhone-Poulenc Rorer, Collegeville, PA. (1993):
  6. Mahr G, Sorgel F, Granneman GR, et al. "Effects of temafloxacin and ciprofloxacin on the pharmacokinetics of caffeine." Clin Pharmacokinet 22 (1992): 90-7
  7. "Product Information. Cipro (ciprofloxacin)." Bayer PROD (2002):
  8. "Product Information. Noroxin (norfloxacin)." Merck & Co., Inc PROD (2001):
  9. Staib AH, Stille W, Dietlein G, et al. "Interaction between quinolones and caffeine." Drugs 34 Suppl 1 (1987): 170-4
  10. Stille W, Harder S, Micke S, et al. "Decrease of caffeine elimination in man during co-administration of 4-quinolones." J Antimicrob Chemother 20 (1987): 729-34
  11. Harder S, Staib AH, Beer C, Papenburg A, Stille W, Shah PM "4-Quinolones inhibit biotransformation of caffeine." Eur J Clin Pharmacol 35 (1988): 651-6
  12. Nicolau DP, Nightingale CH, Tessier PR, et al. "The effect of fleroxacin and ciprofloxacin on the pharmacokinetics of multiple dose caffeine." Drugs 49 Suppl 2 (1995): 357-9
  13. "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome PROD (2001):
  14. Carrillo JA, Benitez J "Clinically significant pharmacokinetic interactions between dietary caffeine and medications." Clin Pharmacokinet 39 (2000): 127-53
  15. Fuhr U, Wolff T, Harder S, Schymanski P, Staib AH "Quinolone inhibition of cytochrome P-450 dependent caffeine metabolism in human liver microsomes." Drug Metab Dispos 18 (1990): 1005-10
  16. Kinzig-Schippers M, Fuhr U, Zaigler M, et al. "Interaction of pefloxacin and enoxacin with the human cytochrome P450 enzyme CYP1A2." Clin Pharmacol Ther 65 (1999): 262-74
  17. Healy DP, Schoenle JR, Stotka J, Polk RE "Lack of interaction between lomefloxacin and caffeine in normal volunteers." Antimicrob Agents Chemother 35 (1991): 660-4
View all 17 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.