Questions about Atrial Fibrillation? Get answers from our expert.

Labetalol Disease Interactions

There are 15 disease interactions with labetalol:

Beta-Blockers (Includes Labetalol) ↔ Asthma/Copd

Severe Potential Hazard, High plausibility

Applies to: Asthma, Chronic Obstructive Pulmonary Disease

In general, beta-adrenergic receptor blocking agents (i.e., beta-blockers) should not be used in patients with bronchospastic diseases. Beta blockade may adversely affect pulmonary function by counteracting the bronchodilation produced by catecholamine stimulation of beta-2 receptors. If beta-blocker therapy is necessary in these patients, an agent with beta-1 selectivity (e.g., atenolol, metoprolol, betaxolol) is considered safer, but should be used with caution nonetheless. Cardioselectivity is not absolute and can be lost with larger doses.

References

  1. Horvath JS, Woolcock AJ, Tiller DJ, Donnelly P, Armstrong J, Caterson R "A comparison of metoprolol and propranolol on blood pressure and respiratory function in patients with hypertension." Aust N Z J Med 8 (1978): 1-6
  2. Fauci AS, Braunwald E, Isselbacher KJ, Wilson JD, Martin JB, Kasper DL, Hauser SL, Longo DL, eds. "Harrison's Principles of Internal Medicine. 14th ed." New York, NY: McGraw-Hill Health Professionals Division (1998):
  3. Falliers CJ, Vincent ME, Medakovic M "Effect of single doses of labetalol, metoprolol, and placebo on ventilatory function in patients with bronchial asthma: interaction with isoproterenol." J Asthma 23 (1986): 251-60
View all 29 references

Beta-Blockers (Includes Labetalol) ↔ Bradyarrhythmia/Av Block

Severe Potential Hazard, High plausibility

Applies to: Heart Block, Sinus Node Dysfunction

The use of beta-adrenergic receptor blocking agents (aka beta-blockers) is contraindicated in patients with sinus bradyarrhythmia or heart block greater than the first degree (unless a functioning pacemaker is present). Due to their negative inotropic and chronotropic effects on the heart, the use of beta-blockers is likely to exacerbate these conditions.

References

  1. "Product Information. Corgard (nadolol)." Bristol-Myers Squibb, Princeton, NJ.
  2. "Product Information. Sectral (acebutolol)." Wyeth-Ayerst Laboratories, Philadelphia, PA.
  3. "Product Information. Trandate (labetalol)." Glaxo Wellcome, Research Triangle Park, NC.
View all 21 references

Beta-Blockers (Includes Labetalol) ↔ Cardiogenic Shock/Hypotension

Severe Potential Hazard, High plausibility

Applies to: Cardiogenic Shock, Hypotension

The use of beta-adrenergic receptor blocking agents (aka beta-blockers) is contraindicated in patients with hypotension or cardiogenic shock. Due to their negative inotropic and chronotropic effects on the heart, the use of beta-blockers is likely to further depress cardiac output and blood pressure, which can be detrimental in these patients.

References

  1. "Product Information. Levatol (penbutolol)." Reed and Carnrick, Jersey City, NJ.
  2. "Product Information. Blocadren (timolol)." Merck & Co, Inc, West Point, PA.
  3. "Product Information. Visken (pindolol)." Sandoz Pharmaceuticals Corporation, East Hanover, NJ.
View all 23 references

Beta-Blockers (Includes Labetalol) ↔ Diabetes

Severe Potential Hazard, High plausibility

Applies to: Diabetes Mellitus

Beta-adrenergic receptor blocking agents (aka beta-blockers) may mask symptoms of hypoglycemia such as tremors, tachycardia and blood pressure changes. In addition, the nonselective beta-blockers (e.g., propranolol, pindolol, timolol) may inhibit catecholamine-mediated glycogenolysis, thereby potentiating insulin-induced hypoglycemia and delaying the recovery of normal blood glucose levels. Since cardioselectivity is not absolute, larger doses of beta-1 selective agents may demonstrate these effects as well. Therapy with beta-blockers should be administered cautiously in patients with diabetes or predisposed to spontaneous hypoglycemia.

References

  1. "Product Information. Lopressor (metoprolol)." Novartis Pharmaceuticals, East Hanover, NJ.
  2. "Product Information. Kerlone (betaxolol)." Searle, Skokie, IL.
  3. "Product Information. Coreg (carvedilol)." SmithKline Beecham, Philadelphia, PA.
View all 21 references

Beta-Blockers (Includes Labetalol) ↔ Hemodialysis

Severe Potential Hazard, High plausibility

Applies to: hemodialysis

Therapy with beta-adrenergic receptor blocking agents (aka beta-blockers) should be administered cautiously in patients requiring hemodialysis. When given after dialysis, hemodynamic stability should be established prior to drug administration to avoid marked falls in blood pressure. The hemodynamic status should be closely monitored before and after the dose.

References

  1. "Product Information. Levatol (penbutolol)." Reed and Carnrick, Jersey City, NJ.
  2. "Product Information. Blocadren (timolol)." Merck & Co, Inc, West Point, PA.
  3. "Product Information. Visken (pindolol)." Sandoz Pharmaceuticals Corporation, East Hanover, NJ.
View all 14 references

Beta-Blockers (Includes Labetalol) ↔ Hypersensitivity

Severe Potential Hazard, High plausibility

Applies to: Allergies

The use of beta-adrenergic receptor blocking agents (aka beta-blockers) in patients with a history of allergic reactions or anaphylaxis may be associated with heightened reactivity to culprit allergens. The frequency and/or severity of attacks may be increased during beta-blocker therapy. In addition, these patients may be refractory to the usual doses of epinephrine used to treat acute hypersensitivity reactions and may require a beta-agonist such as isoproterenol.

References

  1. "Product Information. Sectral (acebutolol)." Wyeth-Ayerst Laboratories, Philadelphia, PA.
  2. "Product Information. Zebeta (bisoprolol)." Lederle Laboratories, Wayne, NJ.
  3. "Product Information. Coreg (carvedilol)." SmithKline Beecham, Philadelphia, PA.
View all 16 references

Beta-Blockers (Includes Labetalol) ↔ Pvd

Severe Potential Hazard, High plausibility

Applies to: Peripheral Arterial Disease, Cerebrovascular Insufficiency

Due to their negative inotropic and chronotropic effects on the heart, beta-adrenergic receptor blocking agents (aka beta-blockers) reduce cardiac output and may precipitate or aggravate symptoms of arterial insufficiency in patients with peripheral vascular disease. In addition, the nonselective beta-blockers (e.g., propranolol, pindolol, timolol) may attenuate catecholamine-mediated vasodilation during exercise by blocking beta-2 receptors in peripheral vessels. Therapy with beta-blockers should be administered cautiously in patients with peripheral vascular disease. Close monitoring for progression of arterial obstruction is advised.

References

  1. "Product Information. Cartrol (carteolol)." Abbott Pharmaceutical, Abbott Park, IL.
  2. Coppeto JR "Transient ischemic attacks and amaurosis fugax from timolol." Ann Ophthalmol 17 (1985): 64-5
  3. "Product Information. Trandate (labetalol)." Glaxo Wellcome, Research Triangle Park, NC.
View all 25 references

Labetalol (Includes Labetalol) ↔ Liver Disease

Severe Potential Hazard, High plausibility

Applies to: Liver Disease

Labetalol is primarily metabolized by the liver. Although its elimination half-life is not altered in patients with impaired hepatic function, the oral bioavailability is greater due to decreased first-pass metabolism. Dosage adjustments may be necessary for patients with liver disease, particularly when labetalol is administered orally. In addition, the use of labetalol has been rarely associated with hepatic injury, including cholestatic jaundice, hepatitis, and hepatic necrosis. Therapy with labetalol should be administered cautiously in patients with a current or past history of liver disease. Routine monitoring of liver function tests is recommended.

References

  1. Stumpf J "Fatal hepatotoxicity induced by hydralazine or labetalol." Pharmacotherapy 11 (1991): 415-8
  2. Douglas DD, Yang RD, Jensen P, Thiele DL "Fatal labetalol-induced hepatic injury." Am J Med 87 (1989): 235-6
  3. "Product Information. Trandate (labetalol)." Glaxo Wellcome, Research Triangle Park, NC.
View all 7 references

Beta-Blockers (Includes Labetalol) ↔ Chf

Moderate Potential Hazard, High plausibility

Applies to: Congestive Heart Failure

Beta-adrenergic receptor blocking agents (aka beta-blockers) in general should not be used in patients with overt congestive heart failure (CHF). Sympathetic stimulation may be important in maintaining the hemodynamic function in these patients, thus beta-blockade can worsen the heart failure. However, therapy with beta-blockers may be beneficial and can be administered cautiously in some CHF patients provided they are well compensated and receiving digitalis, diuretics, an ACE inhibitor, and/or nitrates. Carvedilol, specifically, is indicated for use with these agents in the treatment of mild to severe heart failure of ischemic or cardiomyopathic origin. There is also increasing evidence that the addition of a beta-blocker to standard therapy can improve morbidity and mortality in patients with advanced heart failure, although it is uncertain whether effectiveness varies significantly with the different agents. Data from one meta-analysis study suggest a greater reduction of mortality risk for nonselective beta-blockers than for beta-1 selective agents.

References

  1. "Product Information. Corgard (nadolol)." Bristol-Myers Squibb, Princeton, NJ.
  2. "Product Information. Kerlone (betaxolol)." Searle, Skokie, IL.
  3. Tcherdakoff P "Side-effects with long-term labetalol: an open study of 251 patients in a single centre." Pharmatherapeutica 3 (1983): 342-8
View all 47 references

Beta-Blockers (Includes Labetalol) ↔ Hyperlipidemia

Moderate Potential Hazard, Low plausibility

Applies to: Hyperlipidemia

Beta-adrenergic receptor blocking agents (aka beta-blockers) may alter serum lipid profiles. Increases in serum VLDL and LDL cholesterol and triglycerides, as well as decreases in HDL cholesterol, have been reported with some beta-blockers. Patients with preexisting hyperlipidemia may require closer monitoring during beta-blocker therapy, and adjustments made accordingly in their lipid-lowering regimen.

References

  1. Gordon NF, Scott CB, Duncan JJ "Effects of atenolol versus enalapril on cardiovascular fitness and serum lipids in physically active hypertensive men." Am J Cardiol 79 (1997): 1065-9
  2. Samuel P, Chin B, Schoenfeld BH, et al "Comparison of the effect of pindolol versus propranolol on the lipid profile in patients treated for hypertension." Br J Clin Pharmacol 24 (1987): s63-4
  3. Lithell H, Andersson PE "Metabolic effects of carvedilol in hypertensive patients." Eur J Clin Pharmacol 52 (1997): 13-7
View all 39 references

Beta-Blockers (Includes Labetalol) ↔ Hyperthyroidism

Moderate Potential Hazard, High plausibility

Applies to: Hyperthyroidism

When beta-adrenergic receptor blocking agents (aka beta-blockers) are used to alleviate symptoms of hyperthyroidism such as tachycardia, anxiety, tremor and heat intolerance, abrupt withdrawal can exacerbate thyrotoxicosis or precipitate a thyroid storm. To minimize this risk, cessation of beta-blocker therapy, when necessary, should occur gradually with incrementally reduced dosages over a period of 1 to 2 weeks. Patients should be advised not to discontinue treatment without first consulting with the physician. Close monitoring is recommended during and after therapy withdrawal.

References

  1. "Product Information. Kerlone (betaxolol)." Searle, Skokie, IL.
  2. "Product Information. Lopressor (metoprolol)." Novartis Pharmaceuticals, East Hanover, NJ.
  3. "Product Information. Coreg (carvedilol)." SmithKline Beecham, Philadelphia, PA.
View all 15 references

Beta-Blockers (Includes Labetalol) ↔ Hyperthyroidism Pks

Moderate Potential Hazard, High plausibility

Applies to: Hyperthyroidism

During chronic administration, the clearance of beta-blockers that are primarily metabolized by the liver (e.g., labetalol, metoprolol, penbutolol, propranolol) may be increased in patients with hyperthyroidism due to increased liver blood flow and enhanced activity of drug-metabolizing enzymes. Pharmacokinetic studies have demonstrated an approximately 50% increase in systemic clearance of propranolol during long-term therapy. In general, the dosage required to achieve therapeutic blood concentrations in such patients may be higher than that required in euthyroid patients and should be individualized.

References

  1. Feely J "Clinical pharmacokinetics of beta-adrenoceptor blocking drugs in thyroid disease." Clin Pharmacokinet 8 (1983): 1-16
  2. O'Connor P, Feely J "Clinical pharmacokinetics and endocrine disorders. Therapeutic implications." Clin Pharmacokinet 13 (1987): 345-64

Beta-Blockers (Includes Labetalol) ↔ Iop

Moderate Potential Hazard, Moderate plausibility

Applies to: Glaucoma/Intraocular Hypertension

Systemic beta-adrenergic receptor blocking agents (aka beta-blockers) may lower intraocular pressure. Therefore, patients with glaucoma or intraocular hypertension may require adjustments in their ophthalmic regimen following a dosing change or discontinuation of beta-blocker therapy.

References

  1. "Product Information. Blocadren (timolol)." Merck & Co, Inc, West Point, PA.
  2. "Product Information. Sectral (acebutolol)." Wyeth-Ayerst Laboratories, Philadelphia, PA.
  3. "Product Information. Trandate (labetalol)." Glaxo Wellcome, Research Triangle Park, NC.
View all 15 references

Beta-Blockers (Includes Labetalol) ↔ Ischemic Heart Disease

Moderate Potential Hazard, High plausibility

Applies to: Ischemic Heart Disease

Heightened sensitivity to catecholamines may occur after prolonged use of beta-adrenergic receptor blocking agents (aka beta-blockers). Exacerbation of angina, myocardial infarction and ventricular arrhythmias have been reported in patients with coronary artery disease following abrupt withdrawal of therapy. Cessation of beta-blocker therapy, whenever necessary, should occur gradually with incrementally reduced dosages over a period of 1 to 2 weeks in patients with coronary insufficiency. Patients should be advised not to discontinue treatment without first consulting with the physician. In patients who experience an exacerbation of angina following discontinuation of beta-blocker therapy, the medication should generally be reinstituted, at least temporarily, along with other clinically appropriate measures.

References

  1. "Product Information. Betapace (sotalol)." Berlex, Richmond, CA.
  2. "Product Information. Levatol (penbutolol)." Reed and Carnrick, Jersey City, NJ.
  3. "Product Information. Visken (pindolol)." Sandoz Pharmaceuticals Corporation, East Hanover, NJ.
View all 19 references

Beta-Blockers (Includes Labetalol) ↔ Myasthenia Gravis

Moderate Potential Hazard, Low plausibility

Applies to: Myoneural Disorder

Beta-adrenergic receptor blocking agents (aka beta-blockers) may potentiate muscle weakness consistent with certain myasthenic symptoms such as diplopia, ptosis, and generalized weakness. Several beta-blockers have been associated rarely with aggravation of muscle weakness in patients with preexisting myasthenia gravis or myasthenic symptoms.

References

  1. Coppeto JR "Timolol-associated myasthenia gravis." Am J Ophthalmol 98 (1984): 244-5
  2. Herishanu Y, Rosenberg P "Beta-blockers and myasthenia gravis." Ann Intern Med 83 (1975): 834-5
  3. "Product Information. Blocadren (timolol)." Merck & Co, Inc, West Point, PA.
View all 7 references

You should also know about...

labetalol drug Interactions

There are 883 drug interactions with labetalol

labetalol alcohol/food Interactions

There are 3 alcohol/food interactions with labetalol

Drug Interaction Classification

The classifications below are a general guideline only. It is difficult to determine the relevance of a particular drug interaction to any individual given the large number of variables.

Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.

Do not stop taking any medications without consulting your healthcare provider.

Disclaimer: Every effort has been made to ensure that the information provided by Multum is accurate, up-to-date and complete, but no guarantee is made to that effect. In addition, the drug information contained herein may be time sensitive and should not be utilized as a reference resource beyond the date hereof. This material does not endorse drugs, diagnose patients, or recommend therapy. Multum's information is a reference resource designed as supplement to, and not a substitute for, the expertise, skill, knowledge, and judgement of healthcare practitioners in patient care. The absence of a warning for a given drug or combination thereof in no way should be construed to indicate that the drug or combination is safe, effective, or appropriate for any given patient. Multum Information Services, Inc. does not assume any responsibility for any aspect of healthcare administered with the aid of information Multum provides. Copyright 2000-2014 Multum Information Services, Inc. The information contained herein is not intended to cover all possible uses, directions, precautions, warnings, drug interactions, allergic reactions, or adverse effects. If you have questions about the drugs you are taking, check with your doctor, nurse, or pharmacist.

Hide
(web5)