Anti-Dengue Nanoviricides Achieve Significant Protection in Initial In Vivo Studies on Dengue Hemorrhagic Fever

WEST HAVEN, Conn.--(BUSINESS WIRE)--Jun 21, 2010 - NanoViricides, Inc. (OTC BB: NNVC.OB) (the "Company") reports that its anti-Dengue drug candidates demonstrated significant protection in the initial animal survival studies of Dengue virus infection. The studies were performed in the laboratory of Dr. Eva Harris, Professor of Infectious Diseases at the University of California, Berkeley (UC Berkeley).

Treatment with one of the anti-Dengue nanoviricides® led to survival of 50% of the animals for the duration of study in the ADE model. In addition, animals treated with several anti-Dengue nanoviricides survived longer than the control animals treated with vehicle alone. This ADE model of infection is uniformly fatal in 100% of the infected animals within 5 days after infection.

Dr. Harris is a leading researcher in the field of dengue viruses. Her group has developed a unique animal model for the most severe and potentially fatal form of Dengue virus infection in humans, Dengue Hemorrhagic Fever/Dengue Shock Syndrome (DHF/DSS). The model emulates the “Antibody-Dependent Enhancement (ADE)” of Dengue virus infection in humans that is believed to lead to DHF/DSS.

“We are very excited about these results,” said Professor Harris, adding, “This is a very important demonstration of a viable drug candidate leading to significant survival in the ADE model of Dengue virus infection. I believe nanoviricides show great promise in our model and against severe dengue disease.”

“The first screen has already shown that we are on the right path,” said Anil R. Diwan, PhD, President of the Company, adding, “We believe we have at least one potential drug candidate against Dengue now.”

“We have been able to produce an effective drug candidate against dengue in a very short time,” said Eugene Seymour, MD, MPH, Chief Executive Officer of the Company, adding, “This demonstrates the strength of the nanoviricides technology platform.”

The Company has previously reported significant efficacy of several nanoviricides in two different in vitro (cell culture) tests against dengue virus type 2 conducted by Professor Harris' Lab. Some of these nanoviricides were tested in vivo in the present study.

Dengue is receiving significant international attention as it threatens over 40% of the world population, according to WHO. Dengue cases with significant fatality rates have started rising in tropical countries this year already, as demonstrated by reports from India, Sri Lanka, Indonesia, Philippines, Cambodia, and Colombia, among others. Dengue is endemic in Asia, Mexico, the Caribbean, Central America and many countries in South America. Dengue virus infections have occurred in the southern US states, including a current outbreak in Key West, and travel leads to sporadic cases of dengue in the US.

Foundations run by Bill Gates and Carlos Slim are now teaming up with Spain to donate a total of $150 million to fight dengue fever, malaria and malnutrition in Mexico and Central America under the 2015 Meso-American Health Initiative (http://blog.taragana.com/health/2010/06/14/bill-gates-carlos-slim-announce-150-million-health-donation-for-mexico-central-america-24172/ ).

Dengue virus, a member of the Flaviviridae family of viruses that includes West Nile and Hepatitis C viruses, is transmitted to humans via female Aedes mosquitoes. There are 4 different serotypes of Dengue virus that infect humans. When a person is infected with Dengue virus for the first time, the disease may not be severe, inducing fever, muscle and joint pain, and rash. When the same person is later infected by a different Dengue virus serotype a more severe disease may develop; Dengue Hemorrhagic Fever/Dengue Shock Syndrome (DHF/DSS) occurs in a significant portion of this population. This DHF/DSS may be due to ADE caused by antibodies produced during the first infection. According to the WHO, fatality rates of DHF/DSS can exceed 20%. Currently there are no approved vaccines for prevention nor drugs for treatment of Dengue virus infection.

About Dr. Eva Harris' Laboratory at the University of California, Berkeley

The Harris Laboratory in the Division of Infectious Diseases in the School of Public Health at the University of California, Berkeley (www.Berkeley.edu) has developed a multidisciplinary approach to study the molecular virology, pathogenesis, and epidemiology of dengue, the most prevalent mosquito-borne viral disease in humans. Their work addresses viral and host factors that modulate disease severity. One major research focus has been the development of a mouse model to study viral tropism and pathogenesis, investigate the immune response to dengue virus infection, and evaluate candidate anti-viral therapeutics. Dr. Harris' field work focuses on laboratory-based and epidemiological studies of dengue in endemic Latin American countries, particularly in Nicaragua, where ongoing projects include clinical and biological studies of severe dengue, a pediatric cohort study of dengue and influenza transmission in Managua, and a project on evidence-based, community-derived interventions for prevention of dengue via control of its mosquito vector.

About NanoViricides:

NanoViricides, Inc. (www.nanoviricides.com) is a development stage company that is creating special purpose nanomaterials for viral therapy. The Company's novel nanoviricide™ class of drug candidates are designed to specifically attack enveloped virus particles and to dismantle them. The Company is developing drugs against a number of viral diseases including H1N1 swine flu, H5N1 bird flu, seasonal Influenza, HIV, oral and genital Herpes, viral diseases of the eye including EKC and herpes keratitis, Hepatitis C, Rabies, Dengue fever, and Ebola virus, among others.

This press release contains forward-looking statements that reflect the Company's current expectation regarding future events. Actual events could differ materially and substantially from those projected herein and depend on a number of factors. Certain statements in this release, and other written or oral statements made by NanoViricides, Inc. are “forward-looking statements” within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. You should not place undue reliance on forward-looking statements since they involve known and unknown risks, uncertainties and other factors which are, in some cases, beyond the Company's control and which could, and likely will, materially affect actual results, levels of activity, performance or achievements. The Company assumes no obligation to publicly update or revise these forward-looking statements for any reason, or to update the reasons actual results could differ materially from those anticipated in these forward-looking statements, even if new information becomes available in the future. Important factors that could cause actual results to differ materially from the company's expectations include, but are not limited to, those factors that are disclosed under the heading "Risk Factors" and elsewhere in documents filed by the company from time to time with the United States Securities and Exchange Commission and other regulatory authorities. Although it is not possible to predict or identify all such factors, they may include the following: demonstration and proof of principle in pre-clinical trials that a nanoviricide is safe and effective; successful development of our product candidates; our ability to seek and obtain regulatory approvals, including with respect to the indications we are seeking; the successful commercialization of our product candidates; and market acceptance of our products.

 

Contact: NanoViricides, Inc.
Amanda Schuon, 310-550-7200
info@nanoviricides.com

 

Posted: June 2010

View comments

Hide
(web2)